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Abstract
US business cycles can be empirically characterized as a time-varying mix of different sectoral

shocks. Sectoral shocks are distinct from aggregate shocks and better capture business cycle fluc-
tuations. A typical recession (or boom) is interpreted as the combination of a few sectoral shocks,
which encompass more diverse origins than the typical narrative prevalent for that recession. Sectoral
shocks have aggregate consequences through strong input-output network effects. Identification is
based on network-implied heterogeneity restrictions in a FAVAR framework and far less dependent
on specific DSGE calibrations compared to previous work.
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1 Introduction
A lot of macroeconomic research deals with understanding the sources of aggregate fluctuations. In this
paper, we are interested in how aggregate business cycles relate to evolutions on the sectoral level of the
economy. Breaking down aggregate industrial production into 25 sectoral components, the correlation
between monthly sectoral and aggregate growth (year-on-year from 1973 to 2020) is on average 0.6. This
signifies a large synchronization in sectors’ business cycles. Understanding the source of this sectoral
co-movement provides crucial insights into the general understanding of aggregate fluctuations.

While initial explanations of these facts focused on the role of aggregate shocks, Long and Plosser
(1983) and Acemoglu et al. (2012), among others, suggest that idiosyncratic shocks can propagate through
production networks and thereby cause aggregate fluctuations. Recent structural empirical models with
multiple sectors, such as Foerster, Sarte, and Watson (2011), Atalay (2017), and vom Lehn and Winberry
(2021), have indeed shown that sector-specific shocks are important drivers of business cycles. However,
most of these quantifications on sector contributions rely on a specific calibration of a theoretical model.
Ideally, the evidence explaining the source of aggregate fluctuations should not hinge upon that. We
therefore propose a new structural econometric framework that can disentangle sectoral shocks from
other drivers of aggregate fluctuations without relying on too much economic theory. Our aim is to
provide empirical answers that guard against theoretical misspecification concerns, yet still enable causal
inference.

Our approach exploits heterogeneity in a cross-section for the identification of a structural time-series
model. The main idea behind our identification strategy is as follows: network data (e.g. an input-output
table) contains strong information on how idiosyncratic, sector-specific shocks propagate cross-sectionally.
The propagation pattern of an idiosyncratic shock differs to those of other shocks depending on the
sector where it originates, since every sector connects differently to the network. This heterogeneity
distinguishes sector-specific shocks from one another. Aggregate shocks can be seen as a combination
of sector-specific shocks. This leads to a mixture of cross-sectional patterns that arise upon individual
idiosyncratic shocks. As a consequence, aggregate shocks exhibit cross-sectionally distinct responses to
sector-specific shocks. This distinction breaks the observational equivalence between sectoral shocks with
aggregate consequences and aggregate shocks.

We implement this identification strategy in a factor-augmented vector autoregressive (FAVAR) model
that describes the dynamics of US sectoral industrial production data. We derive cross-sectional rankings
from simple network measures, i.e. up- and downstream variations of the production network’s Leontief
inverse, based on US input-output and capital flow tables. These rankings are largely consistent with the
implied rankings of theoretical impulse response functions to sectoral shocks in canonical multi-sectoral
models, such as Long and Plosser (1983), Horvath (1998, 2000), and Dupor (1999). Our identification
strategy is therefore not reliant on a specific theoretical model but captures network propagation of
sectoral shocks more generally. In principle, the method is flexible enough to deal with alternative
network measures or alternative model specifications. The identification procedure uses heterogeneity
restrictions as introduced in De Graeve and Karas (2014). Amir-Ahmadi and Drautzburg (2021) and
Matthes and Schwartzman (2021) apply these to sharpen identification of aggregate shocks. We adapt
this methodology to identify sector-specific sources of business-cycle fluctuations.

We quantify the contribution of US sectoral shocks to aggregate industrial production growth from
the early 1970s until the inception of the COVID-19 pandemic. Aggregate fluctuations can be explained
in large part by a combination of sectoral shocks without the need of an aggregate shock.

The identified sectoral shocks and their role in recent US economic history accord well with the typical
macro narrative of the time. For instance, our estimates view a large part of the 2001 recession as a
tech-related boom gone bust, or we document how idiosyncratic shocks originating in the oil and gas
extraction sector contribute considerably to most US recessions. Though consistent with such narratives,
there are no sectors whose shocks in isolation dictate the aggregate business cycle.

Our results also suggest a particular view of how sectoral shocks generate aggregate consequences.
A shock to a single sector is not enough to push the economy into a recession. Recessions are episodes
in which several sectors experience negative idiosyncratic shocks. The timing of these shocks is not
necessarily synchronized, and can easily be months apart. We also show that without spillovers to other
sectors, recessions would be much less severe. This evidence empirically supports the relevance of network
propagation in the theoretical production network literature (c.f. Acemoglu et al. 2012).

The importance of sector-specific shocks does not deny the possibility of aggregate shocks in the
business cycle. Our estimated sector-specific shocks are uncorrelated with standard proxies for aggregate
shocks, granting both types of shocks a role in explaining business cycles. Sectoral shocks however explain
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a larger part of output fluctuations than aggregate shocks.

1.1 Literature review
The drivers of aggregate output are traditionally considered to also be of aggregate nature, such as pro-
ductivity, aggregate demand or monetary policy shocks. Most of the literature on economic fluctuations
outright disregards the possibility of microeconomic shocks to specific sectors or firms to generate rele-
vant aggregate fluctuations. The argument, famously expressed by Lucas (1977), goes that with a large
number of sectors, idiosyncratic shocks average out so that in the aggregate no significant fluctuations
occur.

A fast-growing literature has shown that idiosyncratic shocks could indeed explain a more significant
share of aggregate fluctuations than traditionally thought. In practice, this is achieved by introducing
multiple sectors into standard macroeconomic general equilibrium models used for studying economic
fluctuations. Within this “structural/theoretical” branch of the multi-sector literature, there are two
main channels through which idiosyncratic shocks translate into aggregate fluctuations: granularity and
network linkages.

Gabaix’s (2011) granularity hypothesis highlights the potential of shocks to very large firms to cause
sizable aggregate fluctuations. For example, in 2011 Walmart’s total sales accrued to more than two
percent of US GDP. Hence, granularity asserts that shocks to a small amount of very large sectors or firms
will not average out. These idiosyncratic shocks then lead to aggregate fluctuations in macroeconomic
activity.

The second channel, network linkages, is based on the early work of Long and Plosser (1983), who
show in a neoclassical multi-sector model with an input-output structure that idiosyncratic shocks can
lead to relevant aggregate fluctuations. Dupor (1999) disagrees and asserts that Lucas’s (1977) argument
on the law of large numbers also applies to models with such input-output linkages. In contrast, Horvath
(1998, 2000) argues that Long and Plosser’s (1983) hypothesis does hold in the face of the law or large
numbers: some more important sectors supply inputs to a large number of other sectors. Small shocks
to these important sectors can thus drive aggregate fluctuations and the diversification argument breaks
down. Furthermore, Acemoglu et al. (2012) analyze how through higher-order interconnectedness, what
the authors refer to as cascade effects, shocks propagate through the economy. Different from granularity,
widely-connected sectors do not necessarily need to be large but are of importance due to their exposure
to the rest of the economy.1

The challenge the multi-sector literature faces is to empirically distinguish idiosyncratic shocks with
aggregate consequences from truly aggregate shocks. Such an analysis is especially relevant for policy-
makers as the origin of aggregate fluctuations determines the appropriate policy response. Foerster,
Sarte, and Watson (2011) provide a first rigorous analysis to address this identification challenge by
connecting structural models with reduced-form empirical models. They solve the identification problem
that makes disentangling the sources of co-movement difficult. However, their solution depends heavily
on DSGE (Dynamic Stochastic General Equilibrium) modeling assumptions as well as calibration.2 Our
approach enables to step away from such tight assumptions. Other recent contributions use sectoral data
to distinguish supply and demand drivers during the COVID-19 pandemic, such as Brinca, Duarte, and
Faria-e-Castro (2021) and Cesa-Bianchi and Ferrero (2021), but do not solve the identification challenge
of disentangling sectoral from aggregate shocks.

Amir-Ahmadi and Drautzburg (2021) also use the cross-section to show how heterogeneity restrictions
can help to improve structural identification in VAR-type models. Furthermore in recent work, Matthes
and Schwartzman (2021) use input-output data to identify aggregate shocks. However, the focus in
these two papers is not on sectoral shocks but rather on how sectoral data can help to identify aggregate
shocks.

The remainder of the paper is structured as follows. Section 2 presents the strategy for identifying
sector-specific shocks. This motivates the restrictions which we then implement as heterogeneity con-
straints in Section 3, using a Bayesian FAVAR. In Section 4 we describe the data, its transformations,
and the model parameterization. Model results and the analysis of the contribution of sector-specific
shocks to aggregate fluctuations is included in Section 5. We provide additional results from simulations
using data generated by a typical multi-sector DSGE model in Section 6. Section 7 concludes.

1There is a large current interest in embedding multiple sectors into other macroeconomic models, see e.g. Bouakez,
Cardia, and Ruge-Murcia (2014), Smets, Tielens, and Van Hove (2019), Baqaee and Farhi (2019, 2020), Bigio and La’O
(2020), Pasten, Schoenle, and Weber (2020, 2021), and La’O and Tahbaz-Salehi (2022).

2Other papers that identify sectoral origins of business cycles with a strong reliance on specific theory are e.g. Shea
(2002), Acemoglu, Akcigit, and Kerr (2016), Atalay (2017), vom Lehn and Winberry (2021), and Foerster et al. (2022).
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2 Identification
Given the multitude of static and dynamic models in the multi-sector literature, our goal is to provide a
framework that allows identification of sector-specific shocks with a minimum set of assumptions. The
general idea is to exploit heterogeneity in a cross-section for the identification of a structural time-series
model. More specifically, we use input-output (I-O) data to compile sector-specific rankings that allow us
to identify sector-specific shocks and separate them from aggregate shocks. In this section we motivate
these identification restrictions.

2.1 Separating individual sectoral shocks from other shocks
We introduce our identification strategy by means of an illustrative hypothetical economic network:
Figure 1 represents a stylized five-sector network economy as a weighted directed graph. Sector 1 sells to
sector 3, which sells to sector 5. Sector 2 sells to sector 4, which in turn sells to sector 5. Each connection
between sectors is weighted which represents the intensity of the ties.

In the left-hand graph, the economy is hit by a shock in sector 1. The shock has a large impact on the
origin sector 1, and transmits through the production network, affecting its closest downstream sector 3
more than its farther downstream sector 5. The sectors outside sector 1’s network are not affected. The
ranking below the directed graph summarizes the cross-sectional impact of this shock.

The middle graph illustrates that this cross-sectional impact is very different from what happens
when the economy is hit by a sector-2 shock. Here the sectoral responses are ranked from high to low
as: Sector 2 > Sector 4 > Sector 5 > Sectors 1, 3. Comparing the two sectoral shocks exemplifies a
first key feature of sectoral shock transmission: sector-specific shocks have utterly different cross-sectional
implications due to heterogeneity in production linkages. Our identification strategy exploits this feature
by identifying sector-specific shocks as those that accord with the cross-sectional implications of each
sector’s production linkages.

The right-hand panel in the figure shows what happens when the economy is hit by an aggregate
shock. Conceptually, one can think of an aggregate shock as a combination of sector-specific shocks.
What is evident from the resulting ranking is that the sector-specific network patterns mix. As a result,
the implied cross-sectional ranking does not follow any of the individual sector rankings. These differences
in rankings enable us to identify sector-specific shocks as distinct from aggregate shocks (and from one
another).

The above example is highly stylized, yet its intuition goes through for different networks. In our
main implementation we derive identification restrictions directly from standard input-output tables.
We depart from a direct requirements matrix, A, that summarizes the proportion of inputs needed to
produce a dollar worth of output, e.g. the input costs of tires, steel, etc. in the production of cars.

Column j of this matrix shows the relative importance of sector j’s commodity as an input to the
rest of the economy. The largest value in this column for instance indicates the sector that uses sector
j’s commodity the most, relative to that sector’s overall size of production. In order to include network
effects we obtain the total requirements matrix H by calculating the Leontief inverse of matrix A:
H = (I −A)

−1.
The columns of H have an interpretation similar to the columns of A but in addition to direct

also include all indirect linkages between sectors. We then build our analysis sector by sector. The
identification for a shock in sector j, henceforth called the origin sector, is based on vector hj which
corresponds to the jth column of matrix H:

hj = (h1j , h2j , . . . , hNj)
′
. (1)

We then sort hj from highest to lowest value to obtain the sorted vector γj , i.e.

γj = (γ1j , γ2j , . . . , γNj)
′
. (2)

A ranking γj provides information on the degree by which all sectors are connected (downstream) to the
origin sector.3 We exploit this information in our identification strategy: sectors that are ranked higher
are expected to respond stronger to a shock in the origin sector than sectors that are ranked lower.

This identification idea also holds in fully-fledged multi-sector DSGE models. Table 1 shows this for
a prototype, calibrated RBC model similar to Carvalho’s (2008) benchmark model (see Section 6 for

3In Section 4.1 we introduce several improvements to the rankings’ underlying I-O matrices, such as the distinction
between up- and downstream propagation of shocks and the inclusion of investment flow data. However these modifications
are not relevant for motivating our core identification idea.
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details). The second column of the table ranks sectors as implied by one of the sector’s (here sector 13)
Leontief inverse. The third column ranks sectors according to their impulse responses (IRF) to a sector-
13-specific shock. Comparing both columns highlights that there is a direct correspondence between
network measures and theoretical IRFs. The mapping is not perfect but very close. Finally, the last two
columns show the ranked theoretical IRFs to an aggregate technology, and to a government spending
shock. The table presents a sector-13-specific shock, as the aggregate technology shock has maximal
impact on that very sector. This highlights the potential difficulties for identification: identifying a
sector-13-specific shock by simply considering IRFs with a maximum effect on sector 13 would lead
one to incorrectly identify some aggregate shocks as sector-specific. Looking into the cross-sectional
distribution of IRFs however, reveals that aggregate shocks have substantially different cross-sectional
implications. The source of that difference is, as in the earlier stylized example, the fact that sector-
specific network patterns mix when aggregate shocks hit the economy. The same considerations hold
true for the aggregate government spending shock, which has maximal impact in sector 22. Comparing
the aggregate shock ranking with that of a sector-22-specific shock (in columns 4 and 5) again reveals
stark differences between the aggregate and sectoral shock rankings.

The distinct cross-sectional heterogeneity that follows from different shocks is the key feature that
enables us to overcome the fundamental identification problem: separating sectoral shocks from one
another and from aggregate shocks. Our strategy can be applied to different shocks (e.g. upstream
shocks), to different networks (e.g. accounting for both materials and investment networks) or to different
models (e.g. with price frictions).

2.2 Ranking clusters
The strict rankings, γj , can be used directly for identification of a sector-j shock. One shortcoming of
such an approach is that it does not allow for small ranking deviations for sectors that are similarly
connected to the sector j. An identification based on strict rankings could be overly dogmatic and would
not allow for deviations in sectors’ relative responses. Hence, instead of using the strict rankings, we
construct looser rankings by distributing sectors with similar requirements values into clusters. In this
way, we stay agnostic on the exact rankings and rather group sectors according to their connectedness to
the origin sector. Intuitively, we sort the strict rankings into four hierarchical clusters: first, the origin
sector at the highest rank, a second cluster with highly connected sectors, third, a cluster of somewhat
connected sectors, and finally the rest falls into a fourth cluster of only loosely or unconnected sectors.

We define a ranking cluster, Γj , as

Γj ≡ (Γ1j ,Γ2j , . . . ,ΓGj)
′
, (3)

where G is the total number of imposed clusters. The individual clusters Γgj for sector j are composed
of the strict rankings γij :

Γ1j ≡ (γ1j) ,

Γ2j ≡ (γ2j , . . . , γl2,j) ,

...

ΓGj ≡
(
γ(l(G−1)+1),j , . . . , γlG,j

)
,

where lg indexes the respective last sector included in cluster g. Note that Γ1j always contains γ1j
exclusively, i.e. the index of the origin sector.

An additional advantage of working with clusters is that the resulting cross-sectional implications
are more robust to different theoretical models one may have in mind. Alternative theoretical DSGE
specifications can imply deviations from the pure Leontief-implied rankings. By allowing deviations
from the latter, clusters robustify the cross-sectional implications. At the same time the cross-sectional
implications across clusters are still distinct for the different shocks we identify, and thus retain sufficient
identification power as our results will show.

3 Model
In this section we lay out the reduced-form Bayesian factor-augmented VAR model framework and then
show how sector rankings are used as heterogeneity restrictions to identify structural sectoral shocks.
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3.1 The reduced-form model
The reduced-form is a factor-augmented vector autoregressive model (FAVAR) similar to Bernanke,
Boivin, and Eliasz (2005), Boivin, Giannoni, and Mihov (2009), and Stock and Watson (2016):

xt = λxfx
t + λyyt + εt with εt ∼ N (0, Rε) , (4)(

fx
t

yt

)
=

P∑
p=1

φp

(
fx
t−p

yt−p

)
+ ut with ut ∼ N (0, Qu) , (5)

where yt is an M -by-1 vector of observable factors. In our application yt contains the origin sector’s
output growth rate (hence M = 1). On the left-hand side of equation (4), xt is an Nx-by-1 vector
including aggregate industrial production growth and all sector output growth rates other than the
origin sector. We impose K unobservable factors, fx

t , that have factor loadings, λx, while observable
factors have loadings, λy. The transition equation follows a VAR process with parameters φp and P , the
number of lags. Reduced-form shocks, ut, have variance-covariance matrix Qu and measurement errors,
εt, are distributed according to diagonal variance matrix Rε.

Furthermore, the state-space model (4) and (5) can be rewritten in companion form:

Xt = ΛFt + Et , (6)
Ft = ΦFt−1 + Ut , (7)

where

Xt ≡ (x′
t, y

′
t)

′ , (8)

ft ≡ (fx′

t , y′t)
′ , (9)

λ ≡
[

λx λy

0M×K IM

]
, (10)

Ft ≡
(
f ′
t , f

′
t−1, . . . , f

′
t−P+1

)′
, (11)

Et ≡
(
ε′t,0

′
M×1

)′
, (12)

Ut ≡
(
u′
t,0(K+M)(P−1)×1

)′
, (13)

Φ ≡
[

φ1 · · · φP

IKM(P−1) 0KM(P−1)×KM

]
, (14)

Λ ≡
[
λ 0(Nx+M)×(K+M)(P−1)

]
. (15)

We apply a joint estimation procedure by likelihood-based Gibbs sampling as in Bernanke, Boivin,
and Eliasz (2005). Similar to their approach we solve the standard factor identification problem by
setting the upper K ×K block of the loadings matrix λx to an identity matrix and the upper K ×M
block of λy to zero.4 We impose standard priors for reduced-form parameters as in Koop and Korobilis
(2009).

As for identification of structural sectoral shocks, we implement our sector rankings as heterogeneity
restrictions using the algorithm of Rubio-Ramírez, Waggoner, and Zha (2010).

We estimate model (4)-(5) for each sector separately. One of the reasons is that we prefer to include
the origin sector’s growth rate as an observable factor. Including it gives scope to identifying sectoral
shocks that would be thrown out if they do not cause enough variance in the unobserved factors. Since
we do not identify sectoral shocks jointly, we evaluate their correlation ex-post in Section 5.2.

3.2 Heterogeneity restrictions
The goal of our identification strategy is to isolate idiosyncratic shocks to the respective origin sector. We
implement the rankings introduced in Section 2 as heterogeneity restrictions to identify structural shocks
in the reduced-form FAVAR model. Contemporaneous impulse responses are defined in the following
way:

r(f)a = a , (16)
r(X)
a = λr(f)a , (17)

4For more details on estimation see Online Appendix A.
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where a ∈ RK+M is the impulse vector of a (candidate) structural shock that we check against our
restrictions. The vector r

(f)
a includes the impulse responses of the unobserved and observed factors.

Using the loadings λ we calculate the impulse response vector r
(X)
a that contains responses of all sectors

as well as aggregate output growth to the candidate structural shock.
We implement the heterogeneity restrictions by comparing the vector elements of r(X)

a , i.e. r(X)
a (i),

for all i = 1, . . . , N . Since we only impose restrictions on impact and not on later horizons, we only
consider impulse responses on impact in the ranking notation below.5 We first show the implementation
for a strict ranking γj = (γ1j , γ2j , . . . , γNj)

′ and then for a cluster ranking Γj . The notation refers to a
positive sectoral shock originating in sector j, which implies that r

(X)
a (γ1j) > 0.

The first restriction, referred to as R1, ensures that the origin sector has the largest response to the
sectoral shock:

r(X)
a (γ1j) > |r(X)

a (γij)|, ∀i = 2, . . . , N . (18)
Note that we additionally require that no sector response can be larger than the negative of the origin
sector response.

Given that R1 is satisfied we check impulse responses against a second type of restriction, referred
to as R2. For a strict ranking γj we require that sector responses compare such that:

r(X)
a (γij) > r(X)

a (γ(i+1),j), ∀i = 2, . . . , (N − 1) . (19)

Figure 2 illustrates the implementation of restrictions R1 and R2 for a strict ranking.
In our implementation we use cluster rankings Γj = (Γ1j ,Γ2j , . . . ,ΓGj)

′ instead of strict rankings γj .
Hence, we modify R2 to compare minimum and maximum responses of adjacent clusters:

min
{
r(X)
a (Γgj)

}
> max

{
r(X)
a (Γ(g+1),j)

}
, ∀g = 2, . . . , (G− 1) . (20)

Restrictions R1 and R2 imposed on the impulse responses of sectoral growth rates ensure that we identify
shocks that originate from the sectoral level.

Finally, note that we do not identify aggregate shocks explicitly. In principle one could add additional
identification restrictions to also disentangle specific aggregate shocks, see e.g. Matthes and Schwartzman
(2021) for an approach along those lines.

4 Data and model parameterization
This section first describes cross-sectional sectoral data used for our identification restrictions, introduces
sectoral time series data, and parameterization of the empirical model.

4.1 Requirements matrices
Our identification strategy builds on industry-by-industry direct requirements tables that are constructed
from input-output (I-O) accounts’ make and use tables for the United States. While make tables capture
the commodities industries produce, use tables show how industries use commodities as inputs to their
production, as well as the final uses of commodities.6 The Bureau of Economic Analysis (BEA) uses
Census data to construct detailed I-O tables every five years for the United States. These tables are
based on the North American Industry Classification System (NAICS) and allow a mapping between the
components of industrial production and the US I-O accounts. All I-O data are based on 1997 standard
make and use tables, as well as 1997 capital flow tables.7

We now present three modifications to the total requirements matrix H and its rankings introduced
initially in Section 2. This will improve their use for identification further.

First, we consider both downstream and upstream propagation of sectoral shocks. Similar to Ace-
moglu, Akcigit, and Kerr (2016) we use two versions of the standard direct requirements matrices allowing
to explicitly track downstream and upstream production linkages between N sectors. The downstream
measure, N -by-N matrix A, has elements aij with the following interpretation:

aij =
Sales of j to i

Total Sales of i .

5Of course it is possible to restrict sectoral impulse responses also at later horizons. However, as De Graeve and Karas
(2014) show, the use of heterogeneity restrictions can obfuscate the need for longer horizons.

6We use the terms sector and industry interchangeably.
7The BEA does not provide capital flow tables more recent than 1997. See the Online Appendix B for additional

information on incorporating capital-flow tables.
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On the other hand, the upstream measure, matrix Ã measures how much of a given input is used in the
production of all other commodities:

ãij =
Sales of i to j

Total Sales of i .

Its elements ãij compare to elements aij of matrix A in the following way: ignoring network effects,
column j of matrix A shows the relative importance of sector j’s commodity as an input to the economy.
The largest value in this column indicates the sector that uses sector j’s commodity the most, relative to
that sector’s overall size of production. On the other hand, column j of matrix Ã captures the relative
importance of inputs used in production of sector j. The largest value in this column corresponds to the
most important input provider for j, relative to that sector’s own production.8

Similarly, we derive downstream, H, and upstream, H̃, total requirements matrices as

H = (I −A)
−1

, (21)

H̃ =
(
I − Ã

)−1

. (22)

The respective rankings for downstream and upstream shocks are then

γj = (γ1j , γ2j , . . . , γNj)
′
, (23)

γ̃j = (γ̃1j , γ̃2j , . . . , γ̃Nj)
′
. (24)

This decomposition into downstream and upstream shocks has an analogy to the distinction between
sectoral supply and demand shocks. In many theoretical models, such as the one introduced in Sec-
tion 2, supply shocks can only travel downstream. Demand shocks however, for instance in models with
government spending shocks, only travel upstream through the network.9 Acemoglu, Akcigit, and Kerr
(2016) show using four different types of shocks that supply-side (demand-side) shocks do indeed exhibit
little upstream (downstream) propagation. Regardless, in our implementation we implicitly allow for
the possibility that supply shocks have some upstream and vice versa that demand shocks have some
downstream effects. Our only assumption in this regard is that these opposing network effects cannot
completely change the respective ranking of sectoral responses.

A second modification of direct and total requirements matrices relates to the inclusion of investment
data. Rankings γ (and γ̃) only capture network effects originating from trading materials. Several
studies such as Foerster, Sarte, and Watson (2011) or vom Lehn and Winberry (2021) have highlighted
the importance of network effects related to investment flows. We therefore extend the rankings above
by also including I-O account data of private fixed investment. The resulting downstream and upstream
measures, Ac and Ãc, combine input-output connections of materials with investment flows between
sectors.

To highlight the difference to the “materials-only” direct requirements matrices A and Ã, we first
decompose these as:

A = (WB)
′
, (25)

Ã =
(
WB̃

)
, (26)

where W is the transformation matrix, used to transform the commodity-by-industry direct input coeffi-
cient matrix B (and matrix B̃) into industry-by-industry direct requirements matrix A and Ã. Element
bij of matrix B shows the dollar value needed of commodity i to produce one dollar worth of output in
industry j, whereas element b̃ij of matrix B̃ shows the dollar value of industry j’s output used to produce
one dollar worth of commodity i.10

Direct requirements measures, Ac and Ãc, combine direct coefficient matrices B and B̃ with capital
flow matrices Cap and C̃ap, respectively:

MatCap = B + Cap , (27)

8This breakdown of the direct requirements tables, A and Ã, implies that the underlying use and make tables are
symmetric. The actual BEA tables are not symmetric and are therefore adjusted. For more details see Online Appendix B.

9See for instance Carvalho and Tahbaz-Salehi (2019) for an intuitive theoretical description on supply and demand
shocks’ different “direction of travel” in a production network.

10See Online Appendix B for a derivation of matrices W , B, and B̃ using make and use tables.
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Ac = (WMatCap)
′
, (28)

M̃atCap = B̃ + C̃ap , (29)

Ãc =
(
W M̃atCap

)
, (30)

where matrices Cap and C̃ap are direct input and output matrices, equivalent to B and B̃ but for invest-
ments in equipment, software, and structures by industries. Analogously to the rankings described above,
we then create downstream rankings, (γc

j ,Γ
c
j), and upstream rankings, (γ̃c

j , Γ̃
c
j), for all j = 1, . . . , N , that

capture those combined connections of materials and investments.
The third modification relates to the distinction between the total set of US industries and the subset

of industrial production sectors. We disaggregate the private US economy into 64 distinct industries which
roughly corresponds to the BEA’s aggregation at summary level. We modify the BEA’s aggregation to
allow for a clear separation of 25 sectors that are included in US industrial production indices and 39
non-government sectors that are not. This separation is necessary as a complete set of long output time
series data at monthly frequency are only available for NAICS sectors included in industrial production.

The inclusion of non-industrial-production sectors in all I-O matrices requires an additional step in
creating all γ-rankings. Before ranking any of the total requirement matrices, we delete all rows and
columns that correspond to sectors that are not part of industrial production. The remaining 25-by-25
total requirements matrices can then be used to create the rankings.

4.2 Feasibility
One practical consideration in implementing our identification strategy lies in balancing a trade-off
between two opposing issues: first, we need to use sufficient information to rule out that model-identified
sector-specific shocks are conflated with aggregate or other sectors’ shocks. Second, the feasibility to
find structural impulse vectors is directly related to the restrictiveness of the heterogeneity restrictions.
In other words, there is a risk of either imposing too few or too many restrictions. For a given sectoral
shock, inspecting a ranking’s values of the underlying Leontief inverse reveals that there is only a minority
of sectors that exhibit high requirements values. We can almost naturally classify sectors into four
hierarchical clusters for many rankings: origin sector, highly connected sectors, somewhat connected
sectors, and, lastly, loosely/unconnected sectors, which constitutes the majority. As a result we found
that a number of four clusters balances the above trade-off well for our application. At the same time, the
cross-sectional implications across clusters are still distinct for the different shocks we identify, and thus
retain sufficient identification power.11 Aside from cluster uniqueness, the quality of our identification
relies on the heterogeneity within total requirements tables. We therefore only attempt to identify
sector-specific shocks that have sufficiently heterogeneous downstream and/or upstream connections.12

4.3 Industrial production data
We use monthly growth rates of sectoral output and sectoral shares of industrial production (IP) starting
in February 1972. In order to not be affected by the large fluctuations starting in March 2020 induced by
the COVID-19 pandemic we run the model through February 2020. The sectoral breakdown of industrial
production data is based on NAICS and originates from the Board of Governors of the Federal Reserve.13

4.4 Model parameterization
Typical FAVAR models in macro suggest a small number of factors are sufficient to capture aggregate
shocks (c.f. Boivin, Giannoni, and Mihov 2009). Because our aim is to identify sectoral shocks, we
include many more factors. It is wholly possible that sectoral shocks fully determine aggregate business
cycles, but that no single sectoral shock causes more than a small fraction of aggregate volatility. Put
differently, a single sectoral shock might not generate enough volatility to be picked up by the first few
factors. In a typical two-factor FAVAR that shock would be pushed into the measurement error (and
cause correlation across measurement errors, leading to a non-diagonal variance matrix Rε). Onatski

11See Online Appendix Figure A.1 for more details on underlying ranking values, as well as Table A.2 that summarizes
the cluster composition for all potential sector-specific shocks.

12See Online Appendix B.3 for the algorithm we use for clustering and Table A.3 for an overview on which sector-specific
shocks are feasible or not to be identified.

13See Table A.1 in the Online Appendix for more information on all 25 included sectors. Online Appendix B.4 provides
additional details on IP data.
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and Ruge-Murcia (2012) and Stock and Watson (2016) also argue that the number of factors should be
such that it spans the space of structural shocks of interest.

To allow potentially small contributions to aggregate activity, we determine the number of factors by
requiring they explain at least 80 percent of sectoral growth rates in X, on average.14 In practice, this
translates to K = 15 unobserved factors for our sample. Given the number of factors, the number of
lags is determined by Akaike and Schwartz criteria, both indicating one lag is sufficient.15

5 Results
Figure 3 shows that sectoral shocks capture aggregate business cycle fluctuations very well. The red
(solid) line is aggregate industrial production (IP) growth. The black (x-marked) line is the median
contribution of sectoral shocks to aggregate IP growth, and answers the question: if only sectoral (and
no aggregate) shocks were at work, what would aggregate activity be? The black (x-marked) line tracks
the red (solid) line closely. The dashed lines depict associated 95-percentile bands and show that the
red (solid) line is virtually always within the bands. The figure reveals that a large part of fluctuations
in aggregate IP growth is explained by shocks that originate at the sectoral level. Taking the median
estimate at face value, the difference between the red (solid) and the black (x-marked) line in Figure 3
captures non-sectoral drivers, i.e. the contribution of aggregate shocks. While substantial at times, the
role for aggregate shocks is overall subdued compared to the role of sectoral shocks. We provide a range
of robustness analyses in the Online Appendix which includes various alternative versions of Figure 3
that confirm the importance of sectoral shocks in explaining US business cycles.16

5.1 How sectoral shocks generate business cycle fluctuations
What causes this predominant role of sectoral shocks for the business cycle? We show it is a combination
of two facts. First, recessions and booms are characterized by a number of sectoral shocks occurring
around the same time. No single sectoral shock explains the aggregate cycle in full. Moreover, which
particular sectors face substantial shocks and which do not varies over time. Second, these sectoral
shocks cause large network effects, or spillovers to other sectors.

We now visually detail which sectors quantitatively contribute most during several important episodes
in US history. Our discussion focuses on demeaned, median historical contributions.17 More than the
sign of the contributions, it is their dynamics (e.g. peak-to-trough) that shed light on business cycles.

[1973–75] Figure 3 shows that IP growth is well explained by sectoral shocks throughout this period.
IP growth peaked before the official recession started, which is also true for the contribution of sectoral
shocks. The leading character of the idiosyncratic shocks bodes well for the causal interpretation of the
shocks. Figure 4a shows that the drop in IP growth is well explained by a combination of several sectors’
idiosyncratic shocks. The macro narrative often considers this recession the oil recession. Indeed, Oil-gas
is one of the sectors where shocks originate, but it is not the only one. It is worth recalling that several
commodities (e.g. metals, fertilizers, foods, paper, etc.) were subject to steep price increases in the
early 70s (c.f. Cooper and Lawrence 1975). The steepest drop in IP growth occurs only mid-recession.
The sectoral shock contributions highlight that the timing of that drop is not synchronous: a notable
downward acceleration is present already in the summer of 1974 (e.g. Paper, Furniture), while other
sectors experience their steepest drop only from November 1974 onward (e.g. Chemicals, Computers),
and yet others experience a more or less continuous decline throughout the recession (e.g. Plastics,

14More specifically we calculate for every sector FAVAR the R2 that capture by how much the observed and unobserved
factors explain growth in the sectors included in matrix X. Note that for every separate FAVAR the combination of
unobserved and observed factors yields different R2 because X, the matrix from which unobserved factors are extracted,
differs due to the origin sector’s growth rate becoming the observed factor. We hence also average across all possible
sector-FAVARs with respect to the 80 percent threshold.

15Table A.4 in the Online Appendix summarizes all relevant model parameterization.
16Specifically, the appendix shows results from a two-step estimation procedure (Figure A.2), sub-sample estimation

(Figure A.3), and an estimation based on a finer disaggregation of IP into 88 sectors (Figure A.4). Furthermore, the bands
in Figure 3 mix both identification and estimation uncertainty, therefore in Figure A.5 we show similar results for the
identified set, as suggested in Baumeister and Hamilton (2018, 2022).

17The contributions of sectoral shocks to aggregate growth can be further decomposed into up- and downstream sources.
In this paper, we do not focus on this decomposition as our main object of interest is to identify (any) relevant sectoral
origins of aggregate fluctuations. Table A.3 in the Online Appendix contains a breakdown of sectors’ down- and upstream
contributions to IP growth.
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Metals).18 Taken together, Figure 4a suggests there are diverse sectoral shocks contributing to the full
depth of the recession. The point in time in which they start contributing differs across sources. The
predominant (oil) narrative is one of the sectoral sources, yet in isolation it does not account for the full
depth of the recession.

[1980–82] As Figure 3 shows, sectoral shocks do not capture the onset of the 1980 recession well.
The breakdown into individual sectoral shock contributions in Figure 4b reveals that while IP growth
started to fall early on in the recession, sector-specific shocks pushed up IP growth, if anything. In
line with the results in Figure 3, this suggests a significant role for aggregate shocks early on in this
recession. Only in its second half, when IP growth fell more strongly, do we see sectoral causes. Each
of the highlighted sectors capture roughly one percentage point reduction in the growth rate of IP,
which combined account for the full drop in IP growth witnessed from May 1980 onward. The second
80s recession is better captured by sectoral shocks (see Figure 3). Figure 4c shows that the negative
contribution of sectoral shocks to IP growth originates mostly in the Chemicals, Oil-gas, Wood, and
Paper sectors. While some other sectors had milder reductions in their contribution to IP growth (e.g.
Logging, Utilities, Fabricated metals), the bulk of remaining sectors (in gray) did not contribute at all,
with some even increasing substantially.

[1990–91] The early-90s recession is a relatively minor one in IP growth, by historical standards.
This recession, too, is well explained by sectoral shocks. Even more so than any other recession, the
sources are diverse. Figure 4d highlights several sectoral shocks that contribute substantially negatively
to IP growth’s downward trend. Chemicals and Furniture show the largest reductions in historical
decompositions, yet no single sectoral shock contributes massively in its own right. Note also that there
are ample sectoral shocks (in gray) that do not contribute at all.

[2001] The early-90s recession was followed by a decade of growth, which ended with the 2001 re-
cession. This period can be understood in large part through just a handful of sector-specific shocks.
Figure 5a shows that, first and foremost, Computers have the biggest impact on IP growth throughout
the decade, a finding that fits neatly with the typical macro narrative of a tech boom-bust cycle. Yet
once again, the story is more nuanced. For instance, the key contributing sectors to the 1996–98 run-up
in production growth are Paper, Metals and Furniture. The consequent growth slowdown is primarily
caused by Chemicals. The decade of growth came to an end with the 2001 recession. Yet the key
sector-specific contributors to that recession peaked long before its start. The largest downward idiosyn-
cratic shock contributions originate in the Computers sector from October 2000 onward. This also aligns
well with the commonplace single-shock tech boom-bust narrative. Yet in isolation, it does not tell the
whole story: at the median estimates, presented in Figure 5a, it represents only up to a third of the
total peak-to-trough reduction in IP growth. The figure reveals that there are at least two other major
sector-specific contributors: Oil-gas from January 2000 onward and Metals starting in the summer of
1999.

[2007–09] The contribution of sectoral shocks to IP growth in Figure 5b drops substantially prior
to the start of the recession. This is mainly explained by the negative idiosyncratic shocks to Oil-gas
(oil prices were on their historically steepest increase from January 2007 to July 2008) and Wood (end
of the house price and construction boom). The fall in IP growth at the start of the recession (prior
to September 2008) is largely captured by negative shocks to Chemicals, Paper and Metals. There is a
noticeable downward blip in September 2008 in quite a few of the sectoral shock contributions. It hints
at an instance where our approach may pick up something aggregate—the fall of Lehman Brothers. The
two sectors where this is most obvious are Oil-gas (the biggest drop in oil prices occurred two months
earlier) and Paper (which was already in free fall since the end of 2007). Nonetheless, another couple
of sectors (e.g. Printing, Other Transport) show contributions that are void of these effects, perhaps
reducing the concern that aggregate shocks are what the sectoral shocks are absorbing. We will return
to that concern in the next subsection.

[Post Great Recession] In the decade following the Great Recession, Oil-gas appears particularly
influential (see Figure 5c). The dynamics of its contribution are broadly similar to the unconditional
IP growth data. Its contribution in this period is also roughly in line with the evolution of oil prices:
following the massive price drop after the Great Recession, it reaches new heights from 2011 and mid-
2014, ensued by relatively low oil prices throughout 2015 and bottoming out in January 2016. Does
this imply that oil fully determines the business cycle? Not necessarily, as there is an important scale
difference. Consider, for instance, the 2016 trough to 2018 peak in IP growth, where total IP growth went
up by 8 percentage-points (see Figure 5c, right scale). While the contribution of oil shocks is dynamically

18These sector names are mnemonics for NAICS sectors, see Online Appendix Table A.1 for a detailed mapping to NAICS
sector names and codes.

11



similar, quantitatively it accounts for less than half of it (±3.5 percentage-points, left scale).
The above description of several important episodes in US business cycles suggests that recessions

can in large part be seen as instances in which several sector-specific shocks combine to create significant
fluctuations in aggregate activity. This is effectively the breakdown of the Lucas (1977) “averaging-
out” argument. This breakdown occurs because sectors do have connections with one another, which
causes shocks to individual sectors to generate substantial macro-effects. This is the central tenet of
the literature on input-output networks and is corroborated by our results. First, idiosyncratic sectoral
shocks can have a non-negligible impact on aggregate IP growth. They do so by having substantial
network effects, as e.g. in Acemoglu, Akcigit, and Kerr (2016). In line with the latter, Figure 6 shows
that these network effects are quantitatively large: the magenta (o-marked) line shows what the impact
of sector-specific shocks would be if we shut down their effect on other sectors. Second, many historical
episodes can be understood as the consequence of just a handful of sectors being hit by idiosyncratic
shocks. In other words, these sector-specific shocks do not cancel out, but rather create significant
fluctuations in the aggregate.

5.2 Are sectoral shocks really distinct from aggregate shocks?
Since sectoral shocks explain a substantial part of aggregate business cycle fluctuations, it is worth asking
if our procedure is not simply picking up aggregate shocks. In addition to the theoretical identification
arguments (Section 2) and the DSGE simulation exercises (Section 6), we here document several empirical
findings, which suggest that sectoral shocks are distinct from aggregate shocks.

First, we show that sectoral shocks are distinct from one another. If sectoral shocks were capturing
aggregate shocks, one would expect sectoral shocks to correlate with one another. The first panel
of Figure 7 (Sectors) shows that this is not the case. Second, if sectoral shocks were really capturing
aggregate shocks, one would expect sectoral shocks to correlate with widely studied measures of aggregate
shocks. The remaining panels of Figure 7 show the correlations of all sectoral shocks with 52 proxies for
aggregate shocks, as collected by Ramey (2016). Generally, these correlations are small.19

A corollary of the absence of significant correlation between sectoral and aggregate shocks is that
despite the large contribution of sectoral shocks to business cycles, standard aggregate shocks still have
a role to play. Figure 3 already shows how sectoral shocks alone occasionally do not fully trace aggregate
fluctuations. The first 1980s recession, as well as the swift recovery of IP growth after the end of the
Great Recession are particularly noteworthy examples.

To help quantify the relative role of sectoral and aggregate shocks for the business cycle, Figure 8
contains some illustrative regression statistics. The first three histograms in the top row contain the
R2 of regressing IP growth on each of Ramey’s (2016) shock measures, one at a time. Each regression
includes both contemporaneous and lagged values of the shocks (up to three years), without additional
controls.20 These histograms capture the well-known fact that while there are many (exogenous) instru-
ments available to plausibly estimate impulse responses, they do not necessarily explain a large part of
macroeconomic fluctuations (see e.g. Ramey 2016, for a discussion). The vertical (dashed) line in each
panel shows the R2 of regressing IP growth on all the identified sector-specific shocks, contemporaneously
and without lags. The combination of sectoral shocks explains a significant fraction of real volatility,
and substantially more so than any single aggregate shock does. Even when combining three types of
aggregate shocks (histogram in the last column of Figure 8), the explanatory power of sectoral shocks
compares favorably.

The bottom row of Figure 8 presents very similar results for adjusted R2, and thereby reduces concerns
of over-parameterization, due to the many lags in the aggregate shock regressions, and the many shocks
in the sectoral shock regressions, respectively. This is especially relevant for the regressions with three
types of aggregate shocks, included in the last column of the figure, where over-parameterization is even
more of a concern.

19The tails of the correlation histogram with Technology shocks contain a handful of values of around 0.35 (in absolute
value). On the one hand, this may be chance, since we are correlating 26 sectoral shocks with 24 technology shocks. On
the other hand, of all the aggregate shocks to correlate with, aggregate technology shocks would be the most natural one
to expect perhaps some correlation with our sectoral shocks. After all, our sectoral shocks can capture sector-specific
technology shocks, which could seep into measures of aggregate technology.

20See e.g. Romer and Romer (2004) for a similar regression. We do not add lagged IP growth or other control variables,
because they soak up explanatory power without informing the relative extent to which certain shocks help. The aim here
is not to estimate an impulse response, for which lags and other controls would be important.
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6 Testing identification using model-generated data
We test our identification method by using simulated data from a standard theoretical multi-sector model.
We here present a multi-sector RBC model where sectors use each other’s output as inputs in their own
production. Online Appendix C shows robustness, including similar tests for a New Keynesian model
with sectoral heterogeneity in price stickiness. The model here is similar to Carvalho’s (2008) benchmark
model, which in turn is close to the Foerster, Sarte, and Watson (2011) model without capital and with
log utility in consumption. We also add three additional aggregate shocks, a technology, a government
spending and a labor disutility shock. The calibration is largely the same as in Foerster, Sarte, and
Watson (2011), including the input-output tables necessary for calibration.21

The model can be summarized as:

max E0

∞∑
t=0

βt
N∑
j=1

(lnCjt − (Ψ +Ht)Ljt) s.t. , (31)

Yjt = Cjt +

N∑
i=1

Mjit +Gt , (32)

Yjt = λjtL
1−

∑N
i=1 bij

jt

N∏
i=1

M
bij
ijt , (33)

ln(λjt) = ρ ln(λjt−1) + εjt + εt , (34)
Gt = ρgGt−1 + εgt , (35)
Ht = ρhHt−1 + εht , (36)

where j = 1, . . . , N is the sector index, N = 26 the total number of sectors, β the discount factor and
Cjt denotes consumption of good j. A disutility of labor weight, composed of a fixed portion, Ψ = 1,
and a random portion, Ht, multiplies labor input in sector j, Ljt. Production of good j, Yjt, uses
labor and materials, Mijt, which are produced in sectors i = 1, . . . , N . The share bij is an element of
B, the input-output matrix. Sector-specific technology is described by a productivity index, ln(λjt),
that evolves according to an AR process with parameter ρ, and is subject to a sectoral technology
shock, εjt ∼ N (0, σε), and an aggregate technology shock, εt. Aggregate government spending and labor
disutility also evolve according to AR processes in response to government spending shocks, εgt , and labor
disutility shocks, εht , respectively.

We set the persistence parameters ρ = ρg = ρh = 0.5 and calibrate the standard deviations of all
sectoral shocks to 0.01. The size of the three aggregate shocks is then calibrated accordingly to generate
an economy, where roughly 40 percent of the variance in aggregate output is explained by sectoral
productivity shocks and 60 percent by the aggregate shocks (20 percent each).

We simulate T = 600 observations and then use the simulated data in a FAVAR model, applying the
same feasibility and identification procedure as in the main specification with actual data.22

Figure 9 shows two of the sectoral shocks as examples: the blue (solid) line corresponds to the
theoretical shock series and the black (x-marked) line corresponds to the median recovered series through
the FAVAR model and identification. Generally speaking, both series track each other fairly well (while
somewhat better for sector 1 than sector 10), especially when taking into account that the figure only
shows a small snapshot of the two shocks and that these results stem from a single simulation and
subsequent estimation run.23

Figure 9 only illustrates the performance of the method for two example shocks. We check the perfor-
mance for all identified sectoral shocks more generally by calculating the correlation between theoretical
and median estimated shocks. The correlation is positive in all cases, and in most cases relatively high
considering the small-sample nature of this simulation exercise: it ranges from 17 to 77 percent with
an average of 59 percent. Finally, we calculate for each identified shock the frequency by which the

21In comparison to the main specification using actual data, our simulated model only includes input-output tables in
materials and abstracts from capital flows. Also note that the number of sectors and hence the declaration of sectors differs
to the main specification.

22In this simulation exercise we do not select VAR lags based on the Akaike or Schwartz information criterion but rather
set a fixed P = 3. Furthermore, we derive the rankings used for identification directly from the theoretical contemporaneous
impulse response functions. However, as illustrated in Section 2.1, the differences to the rankings directly derived from the
data are minor.

23Additionally, Figure A.8 in the Online Appendix compares the theoretical and empirical impulse responses for identified
sector shocks.
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theoretical shock lies within the 95-percent confidence interval: this coverage-ratio ranges from 77 to 98
percent with an average of 90 percent.

In the above exercise the data-generating process (DGP) is known, and our restrictions are consistent
with it. Yet in reality the DGP is unknown. The fact that our restrictions only rely on cluster-wise relative
responses builds in a degree of robustness to misspecification of the DGP.

It is useful to appreciate what type of alternative DGPs our (cluster-wise Leontief-inverse) restrictions
can and cannot capture. Let us discuss three variations on the above model.

First, changing the number of aggregate shocks in the DGP does not alter the success of our procedure.
As per the intuition detailed in Section 2, an aggregate shock will only confound with a sectoral shock if
they both affect the same sector maximally (restriction R1 ) and affect the clusters in the same relative
order (restriction R2 ). Unless one designs an aggregate shock to do exactly that, there is no obvious
reason why this would occur. Moreover, as the number of sectors and/or clusters grows (as e.g. in our
88-sector robustness check), R2 becomes increasingly binding and hence increasingly unlikely to be also
satisfied for an aggregate shock.

Second, adding more heterogeneity within the present DGP (e.g. in the shock processes, or in the
input-output links), in principle, makes it easier to disentangle shocks, as cross-sectional responses become
increasingly different.

Third, nominal frictions per se do not change the ranking of sectors conditional on a shock. More
specifically, introducing homogeneous price stickiness typically preserves the conditional cross-sectional
relative responses. Price stickiness does, however, strongly influence the quantitative response to shocks.
But since our restrictions are purely qualitative, it leaves the performance of our procedure unchanged.

So what is needed to change the cross-sectional ranking conditional on a shock? Theoretically, DGPs
with enough frictions and heterogeneity in them can generate any type of cross-sectional responses.
For instance, a model that features input-output networks and heterogeneity in price stickiness could
change the cross-sectional ranking conditional on a shock. However, our cluster-wise restrictions hedge
against several variations on the DGP. An extended simulation exercise in Online Appendix C shows the
resilience of these clusters in the presence of heterogeneity in nominal rigidity. We show that rankings
derived from a model without nominal rigidities are still useful for identification when the DGP actually
includes heterogeneity in nominal rigidities. The simple reason is that for a majority of feasible sectoral
shocks, the corresponding sector clusters are in fact the same (or very close) across the flexible and
heterogeneous sticky-price model.24 While one can specify models where our restrictions are violated,
one can equally flexibly adjust the restrictions to whatever concerns that may arise. And importantly,
the type of identification assumptions we propose remains far less restrictive than the DSGE calibrations
used for empirical quantifications predominant in the literature.

7 Conclusion
Sectoral shocks are an important part of aggregate business cycle fluctuations. Our identification ap-
proach allows detecting these shocks through their network links with other sectors. In future work
additional information on sectoral prices in conjunction with sectoral output data could further improve
the separation of sectoral supply and demand drivers. Moreover, the identification method could easily
be applied in different settings, wherever additional cross-sectional information can be exploited for iden-
tification, such as financial networks or in an international trade context. Of particular interest is also
extending our sample into the COVID-19 episode, where the role of sectoral shocks potentially flared up
even more than our results indicate. Doing so may require addressing a number of outlier issues or the
use of a more flexible reduced form specification. Yet it can be useful to complement the evidence that
thus far relies heftily on calibrated DSGE models.

24The exercise is based on Pasten, Schoenle, and Weber (2021) who include heterogeneous price stickiness across sectors.
They show how shocks that appear relatively subdued in a real model may well become very important as a result. That
is, if sector i’s shock generates more aggregate volatility than sector j’s shock in a real model, that may turn around in the
presence of heterogeneity in nominal rigidity. Note that that is a change in sector ranking across different sectoral shocks,
whereas what we restrict is a ranking conditional on a single sectoral shock. Schneider (2023) studies this robustness across
more elaborate DSGE models with input-output networks for a wide variety of frictions, calibrations, and time variation
in I-O tables.
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A Tables

Table 1: Implied rankings of sectoral and aggregate shocks in a theoretical model

ε13 ε22 Aggr. tech. (ε) Aggr. gov. (εg)
Rank Leontief IRFt=0 Leontief IRFt=0 IRFt=0 IRFt=0

1. 13 13 22 22 13 22
2. 3 3 19 19 22 6
3. 2 2 1 1 6 9
4. 14 14 2 2 17 17
5. 1 1 3 3 7 7
6. 26 26 10 10 8 13
7. 17 17 13 13 9 10
8. 15 15 18 18 10 19
...

...
...

...
...

...
...

20. 9 4 12 12 1 5
21. 4 23 6 6 2 26
22. 23 9 15 15 24 12
23. 24 24 8 8 16 16
24. 5 5 24 24 3 24
25. 25 25 7 7 26 25
26. 20 20 9 9 25 3

Notes: The underlying theoretical model is presented in Section 6. The table shows various sector rankings
for four types of shocks: first the ranking for a sector-13 shock, derived from the Leontief inverse of the
input-output data used for calibration of the model. The next column shows the ranked theoretical con-
temporaneous impulse response functions (IRFs) to a sector-13 shock. Analogously, the next two columns
show this exercise for a sector-22 shock. Finally, the last two columns show the ranked theoretical IRFs to
an aggregate technology and to a government spending shock.
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B Figures

Figure 1: Stylized identification example: 3 shocks, 3 rankings
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Notes: This is a stylized example illustrating how different shocks, sectoral or aggregate, generally imply
different sector rankings. We look at three different shocks and rank the magnitude of the responses: first, a
shock originating in sector 1, second, a shock in sector 2, and third, a combination of sector 1 and 2 shocks.
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Figure 2: Identification implementation — example for a sector-13 shock
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(d) R2 — case 3

Notes: This figure shows the implications of restrictions R1 and R2 on all sectoral impulse response
functions in response to an exemplary positive sectoral shock (sector 13). Let the ranking for such a shock be
γ13 = (γ1,13, γ2,13, γ3,13, . . .)

′ = (13, 3, 2, . . .)′. The upper left panel illustrates R1, i.e.
r
(X)
a (γ1,13) > |r(X)

a (γi,13)|, ∀i = 2, . . . , N . The remaining three panels show cases permissible under R2,
i.e. r(X)

a (γi,13) > r
(X)
a (γ(i+1),13), ∀i = 2, . . . , (N − 1).
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Figure 3: IP conditional on sectoral shocks (demeaned, y-o-y growth, in percent)
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Notes: IP refers to demeaned, year-on-year (y-o-y), aggregate industrial production growth. The series is
created from individual sector output growth and sectors’ relative importance weights, hence called
Pseudo-IP. The black (x-marked) series shows IP growth conditional on only sectoral shocks. This historical
contribution is the sum of all effects that the identified sectoral up- and downstream shocks have on IP
growth, reported at the median and a 95%-percentile band.
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Figure 4: Sector contributions to IP: 1970s-90s (demeaned, y-o-y growth, in percent)
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Notes: IP refers to demeaned, year-on-year (y-o-y), aggregate (Pseudo) industrial production growth. The
series is created from individual sector output growth and sectors’ relative importance weights. For every
sub-sample the other series show the contribution of respective sectoral shocks to Pseudo-IP. The sectoral
series includes either a sectoral downstream, upstream, or both types of shocks (when identified) originating
in the indicated sector, reported at the median.
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Figure 5: Sector contributions to IP: 1990s-2020s (demeaned, y-o-y growth, in percent)
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Figure 6: IP conditional on sectoral shocks: origin effect (demeaned, y-o-y growth, in percent)
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Notes: IP refers to demeaned, year-on-year (y-o-y), aggregate industrial production growth. The series is
created from individual sector output growth and sectors’ relative importance weights, hence called
Pseudo-IP. The black (x-marked) series shows IP growth conditional on only sectoral shocks. This historical
contribution is the sum of all effects that the identified sectoral up- and downstream shocks have on IP
growth, reported at the median and a 95%-percentile band. The origin effect (magenta, o-marked series) only
includes the effect that sectoral shocks have in their respective origin sector and thereby ignores the effect
sectoral shocks have in other sectors.
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Figure 7: Correlations of sectoral and aggregate shocks
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Notes: Panel Sectors: median correlations between random draws of different sector’s shocks. Panel
Monetary (respectively Fiscal, Technology): correlation between the median sectoral shock for each sector
and each of the 21 monetary (respectively 7 fiscal, 24 technology) shock proxies studied by Ramey (2016).
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Figure 8: Explanatory power of sectoral and aggregate shocks
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Notes: In the first three columns, histograms contain the (adjusted) R2 of regressing IP growth on a single
monetary (resp. fiscal, technology) shock from Ramey (2016). Each regression contains the contemporaneous
shock and three years of its lags, without additional controls. Monetary shocks and regressions are at
monthly frequency, while fiscal and technology regressions are at quarterly frequency. The vertical line shows
the (adjusted) R2 of regressing IP growth on all the contemporaneous sectoral shocks jointly, without lags or
additional controls, at the same frequency as the respective aggregate shock. The last column is based on
regressions containing a monetary (at quarterly frequency), fiscal, and technology shock, iterating through all
possible combinations of available shock proxies. Due to overfitting concerns we repeat this exercise with
three aggregate shocks in Online Appendix Figure A.7 for lags covering alternatively one or two years.
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Figure 9: Data simulation: theoretical and structural empirical shocks
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Notes: The figure shows two example sectors for which we compare theoretical and empirical structural
shocks: the blue (solid) line corresponds to the theoretical shock series and the black (x-marked) line
corresponds to the median recovered series through the FAVAR model and identification. Additionally
95-percentile bands are shown. Note that this figure only reports results for a single simulation and
subsequent FAVAR estimation run. While the total number of simulated periods is 600 we only show a
snapshot for data points 101 to 150, respectively.
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A Model derivations
Recall the reduced-form model of the main text:

xt = λxfx
t + λyyt + εt with εt ∼ N (0, Rε) , (A.1)(

fx
t

yt

)
=

P∑
p=1

φp

(
fx
t−p

yt−p

)
+ ut with ut ∼ N (0, Qu) , (A.2)

where yt is an M -by-1 vector of the origin sector’s output growth rate and is treated as an observable
factor. Since we identify every shock separately we set M equal to one for every model. On the left-
hand side of equation (A.1), xt is an Nx-by-1 vector including aggregate output growth and all sector
output growth rates other than the origin sector. Unobservable factors fx

t have factor loadings, λx, while
observable factors have loadings, λy. The transition equation follows a VAR process with parameters, φp

and P numbers of lags. Reduced-form shocks, ut, have variance-covariance matrix Qu and measurement
errors, εt, are distributed according to diagonal variance matrix Rε. The measurement equation (A.1)
of the main text can be rewritten as:[

xt

yt

]
=

[
λx λy

0M×K IM

] [
fx
t

yt

]
+

[
εt
0

]
. (A.3)

Furthermore the state-space model (A.1) and (A.2) can be rewritten in companion form as

Xt = ΛFt + Et , (A.4)
Ft = ΦFt−1 + Ut , (A.5)

which implies that the parameters and variables of the state-space model are stacked in the following
way:

Xt ≡ (x′
t, y

′
t)

′ , (A.6)

ft ≡ (fx′

t , y′t)
′ , (A.7)

λ ≡
[

λx λy

0M×K IM

]
, (A.8)

φ ≡ [φ1, φ2, . . . , φP ] , (A.9)

Ft ≡
(
f ′
t , f

′
t−1, . . . , f

′
t−P+1

)′
, (A.10)

Et ≡
(
ε′t,0

′
M×1

)′
, (A.11)

Ut ≡
(
u′
t,0(K+M)(P−1)×1

)′
, (A.12)

Φ ≡
[

φ1 · · · φP

IKM(P−1) 0KM(P−1)×KM

]
, (A.13)

Σ ≡
[

Rε 0Nx×M

0M×Nx
0M×M

]
, (A.14)

Q ≡
[

Qu 0(K+M)×(K+M)(P−1)

0(K+M)(P−1)×(K+M) 0(K+M)(P−1)×(K+M)(P−1)

]
, (A.15)

Λ ≡
[
λ 0(Nx+M)×(K+M)(P−1)

]
. (A.16)

For the derivations below it is also convenient to rewrite the model in matrix form:

X = Fλ′ + E , (A.17)
F = F(−1)φ

′ + U , (A.18)

where X is a (T −P )-by-(Nx +M) matrix containing all observations, including the observed factor, yt.
F is a (T − P )-by-(K +M) and F(−1) a (T − P )-by-(K +M)P matrix of the (lagged) unobserved and
observed factors. Alternatively the model can be stacked in the following way:

x = fl + e with e ∼ N (0, I ⊗ Σ) , (A.19)
f∗ = f∗

(−1)φ
∗ + u with u ∼ N (0, I ⊗Qu) , (A.20)
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with x being a stacked (T − P )(Nx +M)-by-1 vector of all observations, including the observed factor.
Matrix f has dimensions [(T −P )(Nx+M)×(K+M)(Nx+M)] and l is a (K+M)(Nx+M)-by-1 vector
of the loadings. The transition equation uses the following definitions: f∗ is a (T − P )(K + M)-by-1
vector, f∗

(−1) a (T −P )(K +M)-by-(K +M)(K +M)P ) matrix of the lagged factors, and φ∗ = vec (φ′)

is a (K + M)P (K + M))-by-1 stacked vector of parameters. Note that in all derivations we abstract
from the constant included in the VAR equation in order to lighten notation.

In the main specification we apply a joint estimation procedure by likelihood-based Gibbs sampling
as in Bernanke, Boivin, and Eliasz (2005). Similar to their approach we solve the standard factor
identification problem by setting the upper K ×K block of the loadings matrix λx to an identity matrix
and the upper K ×M block of λy to zero.

Alternatively, we estimate the model using a two-step procedure as in Bernanke, Boivin, and Eliasz
(2005) and Boivin, Giannoni, and Mihov (2009). In the first step of this estimation we follow Boivin,
Giannoni, and Mihov (2009) to ensure that the unobserved factors do not capture dynamics induced by
the observed factor:

(i) Obtain initial estimate of fx
t as first K principle components of xt; denote as f

x,(0)
t .

(ii) Regress xt on f
x,(0)
t and yt; obtain coefficients on yt and denote as λy,(0).

(iii) Compute x̃
(0)
t = xt − λy,(0)yt.

(iv) Estimate f
x,(1)
t as first K principle components of x̃(0)

t .

(v) Repeat steps (ii)-(iv) multiple times.

A.1 Gibbs sampler, priors, and posterior distributions
This section lays out the estimation steps of the Gibbs sampler. We first use the Carter and Kohn (1994)
algorithm to sample latent factors. Second, we sample factor loadings and the variance-covariance matrix
Σ. Since this matrix is diagonal we can estimate the factor loadings and error variances equation-by-
equation. This means that for every equation we estimate an li that is a (K + M)-by-1 sub-vector of
the stacked loadings l from observation (i− 1)(K +M) + 1 to i(K +M) for all i = 1, . . . , Nx. Priors are
denominated with lower bars and posteriors with upper bars. We impose an independent Normal-Gamma
prior for the loadings and measurement errors’ variance-covariance matrix:

li ∼ N
(
li, Vli

)
, (A.21)

σ−2
i ∼ G

(
s−1, v

)
. (A.22)

The derivation of the conditional posterior distributions is standard. They are of the following form:

li | X,Σ−1 ∼ N
(
li, Vli

)
, (A.23)

σ−2
i | X, li ∼ G

(
s−1, v

)
, (A.24)

for all i = 1, . . . , Nx, where

Vli =
(
V −1
li

+ σ−2
i F ′F

)−1

, (A.25)

li = Vli

(
Vli li + σ−2

i F ′Xi

)
, (A.26)

v = v + T , (A.27)
Si = vsi , (A.28)
Si = vsi , (A.29)
Si = Si + (Xi − Fλ′

i)
′
(Xi − Fλ′

i) . (A.30)

Since we are proceeding equation-by-equation, we define for the ith variable a vector Xi as the ith column
of X and Si as the corresponding sum of squared residuals. The latter is a function of the degrees of
freedoms v and the variance si. Vector λi corresponds to the ith row of λ. We impose uninformative
priors using the following hyperparameters for all i = 1, . . . , Nx:

Vli = cI with c = 4 ,
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li = 0 ,

v = 0.01 ,

si
−1 = 1000 .

In the next step we estimate the VAR parameters φ∗ and the corresponding variance-covariance
matrix Qu using a diffuse (Jeffrey’s) prior:

φ∗, Qu ∝ |Qu|−
K+M

2 , (A.31)

which implies the following posterior distribution:

φ∗ | Qu, f
∗ ∼ N

(
φ̂∗, Qu ⊗ (F ′F )

−1
)
, (A.32)

Qu | f∗ ∼ W−1
(
Ŝ, T − P − (K +M)P − 1

)
, (A.33)

where Qu is sampled from an inverse Wishart distribution. The vector φ̂∗ refers to the OLS estimate
and Ŝ to the sum of squared residuals of the VAR equation.

Finally, for every model run we check at least 3 million replications, where for every replication we
check 100 impulse vectors against our heterogeneity restrictions. We stop the estimation once we have
reached 500 successful draws. Every model uses a burn-in period of 20,000 replications.
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B Data sources and transformations
B.1 Make, use, and capital-flow tables
We follow the BEA’s (2009) procedure for constructing the industry-by-industry direct and total re-
quirements matrices of the main text. These matrices derive from the 1997 input-output (I-O) account’s
standard make and use tables.

Make tables are industry-by-commodity tables that show the production of commodities by industries.
Rows correspond to the dollar value of commodities produced in a given industry. Columns correspond
to the dollar value of industries’ production of a given commodity. Row sums amount to total industry
outputs and column sums to total commodity outputs. Use tables are commodity-by-industry tables
that show industries’ intermediate as well as final uses of commodities. Rows correspond to the dollar
value of given commodities used by all industries and the commodities’ values in final demand. Columns
correspond to the dollar value of commodities used by a given industry as well as the value added
realized in that industry. Row sums amount to total commodity outputs and column sums to total
industry outputs. The BEA derives make and use tables from Census data which are compiled every
five years.

Our network rankings of the main text are augmented by the 1997 capital flow table. This table
provides detailed information on investments in equipment, software, and structures by industries. In
the use table, capital flows are accounted for in the private fixed investment (PFI) column. The capital
flow table expands the PFI column to show detailed flows of commodities and industries similarly to
the intermediate portion of the use table. While PFI includes purchases of new and used assets, the
capital-flow table only accounts for purchases of new assets.1

B.2 Industry-by-industry direct & total requirements matrices
In this subsection we describe the construction of the commodity-by-industry direct input coefficient
matrix B (as well as matrix B̃) needed to derive the downstream and upstream measures, A and Ã, of
Section 4.

We start from the make table V and the intermediate use table U , i.e. omitting the columns of the
use matrix that include final demand uses and follow the BEA’s (ibid.) procedure to derive an industry-
by-industry direct requirements matrix WB. This matrix is a product of the direct input coefficient
matrix B and transformation matrix W , which in turn is a function of the market share matrix D:

B = U (diag(g))
−1

, (A.34)
D = V (diag(q))

−1
, (A.35)

W = (I − diag(p))
−1

D , (A.36)

where diag(x) refers to a square matrix where the elements of vector x are on the diagonal and zeros
elsewhere. The vector g includes total industry output, q is a vector of total commodity outputs, and
p is vector of the ratio of scrap production to total industry output. The transformation procedure for
direct requirements tables needs to explicitly take into account the production of scrap materials which
is a commodity produced as a by-product.2

The upstream measure Ã of the main text uses a variation of this procedure and is based on matrix
B̃:

B̃ = (diag(q))
−1

U . (A.37)

Furthermore, the measures Ac and Ãc in the main text also include direct coefficient matrices Cap
and C̃ap for investments, which are defined similarly to matrices B and B̃:

Cap = F (diag(g))
−1

, (A.38)

C̃ap = (diag(q))
−1

F , (A.39)

where F is the commodity-by-industry capital flow table.
1For more information see BEA (2009, pp. 12.4-12.5).
2For more details on the need for accounting for scrap materials see BEA (ibid., pp. 12.21–12.24).
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B.3 Feasibility criterion
Every sector shock is identified using four ranking clusters. For some sector shocks there is not enough
variation in the respective total requirements vector. We label these types of shocks infeasible and do
not attempt to identify them.

We determine whether a sector ranking is feasible using the following rule: for every sectoral shock
we take the sorted total requirements values and assess the variation in that ranking. Specifically, we
calculate the differences between adjacent ranking values and define a minimum cut-off value of 0.01 that
separates the clusters. This implies that we need at least 3 cut-offs in each ranking that are larger than
0.01 so that we can obtain four well-defined clusters. We experimented with many different feasibility
criteria but this one seemed to be the most reasonable both in terms of simplicity and for eliminating
sectoral shocks that are difficult to identify.

In the set of infeasible sectoral shocks we also include the special case of the upstream ranking for
Petroleum and coal products, i.e. ranking γ̃c

12. For this ranking the restriction R1 that the origin sector
has the largest total requirements value is violated, as the total requirement values for both sector 2, Oil
and gas extraction as well as sector 4, Support activities for mining, are in fact larger than for sector 12.
We therefore do not identify upstream sector-12 shocks.

B.4 Industrial production data
Data on seasonally-adjusted industrial production (IP) originate from the Board of Governors of the
Federal Reserve. We use monthly data from January 1972 until February 2020.3 We match the sector
disaggregation of industrial production data to the NAICS (North American Industry Classification
System) sector definition of I-O account data.

For some sectors industrial production data is not directly available but can be approximated ac-
cording to the board’s suggested aggregation procedure. The approximation of missing sector data falls
into either of two cases. First, for a sector a that is the composite of a sector b and c the industrial
production growth rate of a is approximated by:

Iat
Ia,t−1

=

(
Ibt

Ib,t−1
wb,t−1 +

Ict
Ic,t−1

wc,t−1

wb,t−1 + wc,t−1

)0.5

×

(
wbt + wct

Ib,t−1

Ibt
wbt +

Ic,t−1

Ict
wct

)0.5

, (A.40)

where Iit refers to industrial production of sector i and ωit is the relative importance weight of that
sector. The approximation for sector a’s relative importance weight in aggregate industrial production
is wat = wbt+wct. Alternatively, if we wanted to approximate sector b as the difference between a sector
a and a sector c, we calculate the growth rate of b as:

Ibt
Ib,t−1

=

(
Iat

Ia,t−1
wa,t−1 − Ict

Ic,t−1
wc,t−1

wa,t−1 − wc,t−1

)0.5

×

(
wat − wct

Ia,t−1

Iat
wat − Ic,t−1

Ict
wct

)0.5

, (A.41)

with the approximation for sector b’s weight in aggregate IP being wbt = wat − wct.

3The industrial production data from the Board of Governors of the Federal Reserve was downloaded on 13 June 2022.
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C Additional exercises using model-generated data
The data-generating process (DGP) used in Section 6 derives from a simple flexible-price model. Theo-
retically, DGPs with enough frictions and heterogeneity in them can generate any type of cross-sectional
responses. As a consequence there is a concern that our cross-sectional rankings may be invalid for other
such DGPs with additional frictions. Hence in this appendix, we show that rankings derived from a
model without nominal rigidities (Flex. ranking) are still useful for identification when the actual DGP
includes heterogeneity in nominal rigidities (Het. DGP). The reason is that our cluster-wise restrictions
(derived from a flexible price model) have a sufficient degree of robustness built in.

Table A.5 compares the identification results across the different model exercises. Details on the
underlying models of the DGPs are referred to the next sub-section. The first three columns of the
table report different combinations of model-generated data and the rankings used for the identification
exercise. Flex. DGP refers to data generated from the flexible price model (Equation A.42) and Het. DGP
to the heterogeneous price-stickiness model (Equation A.43). Similarly, Flex. ranking refers to sector
rankings derived from the flexible price, and Het. ranking from the heterogeneous price-stickiness model.
We report for each combination of model-generated data and theory-implied rankings the performance
for all identified sectoral shocks by calculating the correlation between theoretical and median estimated
shocks. Similarly, we calculate per combination of data and ranking the frequency by which theoretical
shocks lie within the 95-percent confidence interval.

For ease of reference the last column of Table A.5 includes the correlations and coverage ratios for the
DGP of the main text. Inspecting the results of the first three columns reveals that both correlations and
coverage ratios are in same ballpark of the DGP exercise presented in the main text. Column Flex. DGP/
Flex. Ranking shows the success of our procedure is very comparable for an alternative flexible price DGP
(the DGP in the main text differs in some details). If instead the true DGP features heterogeneity in
price stickiness, an econometrician who implements our method based on that belief is as successful in
detecting the theoretical sectoral shocks (see column Het. DGP/ Het. Ranking).

Of course the econometrician does not know the DGP in reality which implies there is scope for
misspecification. Column Het. DGP/ Flex. Ranking shows the results of this experiment. Suppose
the econometrician would only use rankings derived from a flexible price economy (without incorporat-
ing information on heterogeneous price stickiness), while the true DGP features heterogeneity in price
stickiness. Even in this case where there is a mismatch between DGP and empirical approach, the
econometrician would still be similarly successful in retrieving the true sectoral shocks.

C.1 Model setup
The solutions used to simulate the two DGPs are taken from Schneider (2023), which in turn are based
on Pasten, Schoenle, and Weber’s (2021) New Keynesian model. In this exercise we simulate sectoral
technology shocks as well as an aggregate technology shock.

Note that the input-output network is different to the one in Section 6 and uses a breakdown of
the full US economy into J = 33 sectors. The model version of the main text uses a different sector
decompositions and only captures the industrial-production portion of the US economy. Furthermore,
the two models of this appendix are not based on gross output (such as industrial production indices)
but on GDP which in absence of capital production is just equal to consumption expenditure in these
types of models.

For a full model setup see Schneider (2023). Here we just introduce the key equations for the sectoral
rankings. The first of the two models is a flexible price version and the solution is based on the following
multiplier matrix:

X̂im ≡ [I− δΩ]
−1

, (A.42)

where I is the identify matrix, Ω is the J-by-J I-O matrix, and δ = 0.53 is the intermediate input share
in production. The second model is a New Keynesian variant using a simple information friction to
model price rigidity. The model explicitly allows for sector heterogeneity in price stickiness:

X̂im ≡
[
I− δ(I−Λim)Ω

]−1
(I−Λim) , (A.43)

where Λim is a diagonal J-by-J matrix including sectoral price-rigidity probabilities, λj . The diagonal
elements λj measure the probability by which a firm needs to set its price before it can observe the
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shocks.4 The J-by-1 vector of sectoral consumption expenditures (in log deviations from steady state),
ct, is given by:

ct = X̂cat , (A.44)

where ct is expressed in response to J sectoral productivity processes, at. The consumption multiplier
matrix, X̂c, is a function of multiplier matrix, X̂im:

X̂c = [ηI+ (1− η)ιΩ′
c] X̂

im . (A.45)

Here, η = 0.5 is the elasticity of substitution across sectors, ι is a column vector of ones of the appropriate
dimension, and Ωc is a vector of sectoral consumption shares.5 The corresponding sector rankings (and
clusters) used as identification restrictions for sectoral shocks are then based on X̂c, similarly to the main
text. We apply the feasibility criterion of the main text to the flexible-price model solution and use the
resulting set of feasible sectors for both the flexible and heterogeneous price-stickiness model to ensure
comparability.6

As in Section 6, we assume a sectoral technology process (the vector elements of at):

ajt = ρajt−1 + εjt + εt , (A.46)

where εjt ∼ N (0, σε) is a sectoral technology shock, and εt is the aggregate technology shock. We set
the persistence parameters ρ = 0.5 and calibrate the standard deviations of all sectoral shocks to 0.01.
The standard deviation of the aggregate technology shock targets roughly 60 percent of the variance in
aggregate output with the remaining 40 percent being explained by sectoral technology shocks.

We simulate T = 600 observations and then use the simulated data in a FAVAR model, applying the
same identification procedure as in the main specification with actual data.7

4Monthly frequencies of producer prices are based on older Standard Industrial Classification (SIC) estimates from
Peneva (2011) and are converted to current NAICS definitions.

5Note that in contrast to Schneider (2023), we only consider NAICS sectors and do not map the model to US Personal
Consumption Expenditure categories. Hence, the solution for consumption ct used in this appendix assumes that (in
notation of Schneider 2023): K = I, Ωc = Ωim

c , and Λpce = 0.
6To be more precise, feasibility is derived from X̂im of the flexible price model, as this object is closest to the total

requirements values used in the main text.
7In this simulation exercise we do not select VAR lags based on the Akaike or Schwartz information criterion but rather

set a fixed P = 3.

8



D Additional tables

Table A.1: Industrial production sectors: fact sheet

No. Name Mnemonic NAICS Weight SDev

1. Logging Logging 1133 0.24 8.76
2. Oil and gas extraction Oil-gas 211 6.95 5.48
3. Mining excl. oil and gas Mining 212 2.37 8.44
4. Support activities for mining Support Mining 213 1.55 19.56
5. Electric and gas utilities Utilities 221 9.47 3.75
6. Food, beverage and tobacco prod-

ucts
Food 311_2 10.09 2.26

7. Textile mills and textile product
mills

Textiles 313_4 1.5 7.5

8. Apparel and leather and allied prod-
ucts

Apparel 315_6 1.61 7.57

9. Wood products Wood 321 1.39 8.39
10. Paper and paper products Paper 322 2.98 5.13
11. Printing and related support activi-

ties
Printing 323 2.11 4.88

12. Petroleum and coal products Petroleum-coal 324 2.31 4.99
13. Chemicals Chemicals 325 9.91 5.39
14. Plastics and rubber products Plastics 326 3.14 7.68
15. Nonmetallic mineral products Non-metals 327 2.15 6.71
16. Primary metals Metals 331 3.22 11.32
17. Fabricated metal products Fabr. metals 332 5.77 6.68
18. Machinery Machinery 333 6.23 9.02
19. Computer and electronic products Computers 334 7.48 10.8
20. Electrical equipment, appliances,

and components
Electronics 335 2.37 7.44

21. Motor vehicles, bodies and trailers,
and parts

Vehicles 3361_3 5.71 14.75

22. Other transportation equipment Other transport 3364_6,9 4.23 8.69
23. Furniture and related products Furniture 337 1.41 8.11
24. Miscellaneous manufacturing Misc 339 2.63 4.68
25. Newspaper, periodical, book, and

database publishers
Publishing 5111 3.2 5.2

Notes: The table shows for every industrial production sector the average sector Weight (in
percent) and standard deviation (SDev) of the sector year-on-year growth rates (in percent).
A more detailed description of these NAICS sectors can be found at naics.com.
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Table A.2: Rankings with 4 clusters

Cluster γj γ̃j γc
j γ̃c

j

1 1 1 1 1
2 9 2 9 2, 4, 18
3 10 13, 12 10 13, 12, 16, 21
4 23, 11, 6, 24, 25, 14,

15, 20, 7, 13, 21, 8,
18, 16, 17, 3, 22, 19,
5, 12, 4, 2

7, 5, 14, 6, 3, 9, 10,
11, 16, 17, 15, 18,
20, 19, 21, 4, 25, 24,
8, 22, 23

23, 11, 6, 24, 25, 14,
15, 7, 20, 13, 21, 5,
3, 8, 18, 12, 16, 22,
2, 17, 19, 4

17, 14, 7, 3, 9, 19,
20, 5, 10, 15, 11, 6,
23, 22, 24, 25, 8

1 2 2 2 2
2 12 4 12 4
3 5 16 5 16, 18
4 13, 3, 4, 14, 7, 10,

16, 15, 6, 1, 9, 20,
8, 11, 21, 17, 23, 22,
24, 18, 19, 25

5, 17, 3, 12, 13, 15,
18, 14, 10, 11, 20, 1,
21, 19, 25, 9, 24, 7,
8, 6, 22, 23

13, 3, 4, 7, 14, 10,
16, 15, 6, 1, 9, 20,
11, 8, 21, 17, 23, 22,
24, 18, 19, 25

17, 3, 21, 15, 19, 12,
5, 20, 14, 13, 22, 10,
11, 1, 9, 23, 7, 24,
25, 8, 6

1 3 3 3 3
2 16, 15 4 16, 15 4
3 5 2 5 18, 2, 16
4 17, 13, 20, 21, 18,

12, 10, 14, 7, 22, 24,
23, 4, 6, 9, 11, 2, 19,
8, 1, 25

12, 18, 16, 5, 17, 14,
15, 13, 1, 20, 10, 9,
11, 21, 25, 19, 7, 24,
22, 8, 6, 23

17, 13, 21, 20, 12,
18, 10, 2, 14, 7, 22,
4, 24, 23, 6, 9, 11,
19, 8, 1, 25

17, 12, 14, 5, 20, 21,
15, 19, 22, 13, 1, 9,
10, 11, 23, 7, 25, 24,
8, 6

1 4 4 4 4
2 2 2 2 18
3 3, 12 16, 15, 12 12 16, 2
4 5, 16, 15, 13, 7, 14,

10, 20, 17, 21, 6, 18,
9, 22, 23, 24, 11, 8,
1, 19, 25

17, 18, 3, 13, 14, 5,
11, 10, 20, 1, 19, 9,
21, 25, 7, 24, 22, 6,
8, 23

3, 5, 13, 16, 15, 7,
14, 10, 6, 20, 9, 21,
1, 17, 11, 8, 22, 18,
23, 24, 19, 25

15, 17, 12, 19, 20, 3,
21, 13, 14, 11, 5, 10,
1, 9, 23, 7, 24, 22,
25, 8, 6

1 5 5 5 5
2 16, 12, 15, 10, 3, 7 2 12, 16, 15, 3, 10 2, 4
3 13, 14 3 7 3
4 17, 2, 9, 6, 8, 11, 20,

21, 23, 18, 24, 22, 4,
19, 1, 25

4, 12, 20, 15, 16, 17,
14, 9, 1, 18, 10, 13,
11, 19, 25, 21, 7, 24,
22, 23, 6, 8

2, 13, 14, 6, 17, 9,
11, 8, 20, 21, 23, 18,
4, 22, 24, 19, 1, 25

20, 16, 18, 15, 17,
19, 12, 21, 9, 14, 1,
13, 10, 11, 23, 22, 7,
24, 25, 8, 6

1 6 6 6 6
2 8 10 8 10
3 10, 7, 13 1, 14, 2 10, 7, 13 1, 18, 14, 17, 2, 4,

16, 15, 13, 21, 3, 11,
20, 12, 5, 19, 9

4 1, 14, 24, 9, 11, 23,
21, 12, 20, 16, 22,
18, 15, 19, 17, 25, 4,
3, 5, 2

13, 17, 15, 11, 12, 3,
5, 16, 9, 20, 7, 18,
19, 25, 24, 21, 4, 8,
22, 23

1, 14, 9, 24, 11, 12,
23, 21, 20, 16, 22,
15, 19, 4, 18, 5, 3,
2, 17, 25

7, 23, 22, 24, 25, 8

1 7 7 7 7
2 8 13 8 13
3 23 8, 2 23 18, 2, 4, 8
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Table A.2 — Continued
Cluster γj γ̃j γc

j γ̃c
j

4 24, 14, 21, 10, 11, 9,
22, 1, 13, 15, 6, 18,
20, 25, 3, 19, 17, 12,
16, 4, 2, 5

11, 10, 5, 3, 14, 15,
12, 1, 17, 19, 16, 9,
20, 18, 6, 25, 24, 4,
21, 22, 23

24, 14, 21, 10, 11, 9,
22, 1, 13, 15, 6, 18,
2, 3, 20, 12, 25, 4,
19, 5, 17, 16

11, 10, 16, 3, 14, 5,
17, 19, 15, 20, 1, 12,
9, 21, 23, 24, 22, 25,
6

1 8 8 8 8
2 7 7 7 7
3 11 13 11 13
4 21, 24, 23, 25, 10,

14, 9, 22, 6, 18, 13,
20, 12, 19, 16, 15,
17, 2, 3, 4, 1, 5

11, 2, 10, 14, 24, 5,
1, 17, 3, 19, 20, 12,
16, 15, 9, 6, 18, 25,
21, 4, 22, 23

21, 24, 23, 25, 10,
14, 2, 12, 9, 22, 6,
3, 4, 13, 18, 20, 16,
19, 15, 5, 17, 1

11, 18, 2, 4, 10, 14,
19, 17, 16, 24, 20, 1,
5, 3, 15, 9, 12, 21, 6,
23, 25, 22

1 9 9 9 9
2 23 1 23 1
3 10 15, 17, 2 10 15, 17, 18, 16, 2, 4,

20, 14, 13, 19, 7, 10,
3, 21, 23, 5, 12

4 24, 11, 15, 20, 21, 6,
16, 14, 7, 18, 22, 5,
8, 17, 25, 13, 3, 19,
4, 1, 12, 2

13, 14, 20, 16, 7, 10,
5, 3, 12, 23, 19, 11,
21, 18, 24, 6, 25, 4,
8, 22

24, 11, 5, 15, 20, 6,
21, 16, 7, 14, 3, 22,
12, 18, 13, 2, 4, 8,
17, 19, 25, 1

11, 24, 22, 6, 25, 8

1 10 10 10 10
2 11 1 11 1
3 25 9 25 9
4 6, 24, 14, 15, 23, 13,

20, 7, 8, 21, 18, 17,
9, 19, 12, 22, 16, 4,
3, 2, 5, 1

13, 2, 14, 3, 7, 5, 17,
12, 16, 11, 19, 15,
20, 18, 6, 25, 24, 4,
8, 21, 23, 22

6, 14, 24, 15, 23, 13,
20, 7, 8, 21, 18, 12,
19, 17, 9, 2, 22, 4,
16, 3, 5, 1

13, 18, 2, 4, 14, 3, 7,
16, 17, 5, 19, 20, 12,
15, 11, 21, 23, 22,
24, 25, 6, 8

1 11 11 11 11
2 25 10 25 10
3 8, 7 1 8, 7, 13, 6, 12, 4, 2,

21, 23, 22, 10, 19,
24, 14, 20, 5, 3, 16,
18, 15, 9, 17

1

4 13, 6, 23, 21, 10, 24,
4, 12, 19, 22, 20, 14,
18, 16, 9, 17, 2, 15,
5, 3, 1

13, 7, 8, 2, 14, 9, 5,
3, 17, 16, 25, 18, 19,
12, 20, 15, 24, 21, 6,
4, 22, 23

1 18, 13, 7, 8, 16, 2,
14, 4, 19, 9, 17, 3,
20, 5, 25, 21, 12, 15,
23, 24, 22, 6

1 12 12 12 12
2 4, 13, 3 2 4, 3, 13 2
3 14, 5, 7, 10, 16, 1,

6, 2, 15, 9, 20, 11, 8,
21, 22, 23, 17, 24, 18

4 5, 2, 14, 7, 10, 16, 6,
1, 15, 9, 20, 11, 21,
8, 22, 23, 17, 18, 24

4

4 19, 25 5, 3, 13, 16, 15, 17,
10, 14, 11, 18, 20, 1,
19, 9, 25, 21, 24, 7,
6, 22, 8, 23

19, 25 5, 3, 18, 16, 17, 15,
13, 19, 21, 20, 14,
10, 11, 1, 22, 9, 23,
7, 24, 25, 8, 6

1 13 13 13 13
2 14, 7 2 14, 7 2, 4
3 10, 8 3, 10, 14, 12 10, 8 3
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Table A.2 — Continued
Cluster γj γ̃j γc

j γ̃c
j

4 24, 11, 20, 23, 6, 15,
12, 21, 9, 1, 22, 4,
17, 18, 3, 19, 2, 16,
25, 5

5, 17, 11, 15, 1, 16,
19, 20, 9, 18, 4, 7,
24, 25, 6, 21, 8, 22,
23

11, 24, 20, 12, 23, 6,
15, 21, 2, 9, 4, 3, 22,
1, 17, 18, 19, 5, 16,
25

14, 10, 12, 18, 17,
16, 19, 5, 15, 20, 11,
1, 21, 9, 23, 7, 24,
22, 25, 6, 8

1 14 14 14 14
2 23 13 23 13
3 21, 24 7, 10, 2 21 7
4 20, 18, 10, 6, 13, 22,

19, 3, 9, 7, 11, 15,
8, 17, 12, 4, 16, 2, 5,
25, 1

1, 15, 16, 3, 17, 5,
12, 20, 19, 11, 9, 18,
24, 25, 4, 6, 8, 21,
22, 23

24, 20, 18, 10, 6, 13,
22, 3, 19, 7, 11, 9,
15, 2, 12, 8, 4, 5, 17,
16, 25, 1

18, 10, 2, 4, 16, 17,
15, 1, 3, 19, 20, 5,
12, 9, 11, 21, 23, 24,
22, 25, 8, 6

1 15 15 15 15
2 16, 20 3 16, 20, 4 3
3 4, 21, 9 10, 2 21, 9, 12, 2, 5, 6, 14,

18, 3, 7, 22, 17, 23,
24, 13, 19, 10, 8, 11

4

4 18, 14, 6, 12, 17, 23,
24, 7, 22, 5, 3, 13, 2,
19, 10, 8, 11, 25, 1

5, 13, 1, 16, 14, 17,
9, 12, 7, 4, 19, 20,
11, 18, 24, 21, 25,
22, 6, 23, 8

1, 25 10, 18, 2, 16, 5, 13,
17, 1, 14, 19, 9, 20,
12, 21, 7, 11, 23, 24,
22, 25, 8, 6

1 16 16 16 16
2 17 3 17 3
3 20, 18, 21 15, 2, 17, 20, 5 20, 18, 21 4, 15, 17, 18, 2, 20
4 22, 24, 23, 4, 19, 3,

2, 12, 14, 15, 9, 5,
10, 6, 13, 11, 7, 8,
25, 1

12, 18, 19, 10, 13,
14, 1, 9, 4, 11, 25,
21, 24, 7, 22, 6, 23,
8

22, 24, 23, 4, 2, 3,
12, 19, 5, 14, 15, 10,
6, 9, 13, 7, 11, 8, 25,
1

5, 19, 12, 14, 9, 10,
13, 1, 21, 11, 22, 23,
25, 7, 24, 6, 8

1 17 17 17 17
2 18, 22 16 22, 18 16
3 21 3 21 3
4 20, 16, 23, 19, 24, 9,

4, 6, 3, 14, 13, 12,
2, 10, 15, 7, 5, 11, 8,
25, 1

2, 15, 20, 10, 13, 5,
14, 18, 19, 1, 12, 11,
9, 7, 21, 24, 25, 4,
22, 23, 6, 8

20, 16, 4, 23, 2, 3,
19, 12, 9, 24, 6, 5,
13, 14, 10, 15, 7, 11,
8, 25, 1

18, 20, 4, 15, 2, 19,
10, 14, 13, 5, 1, 9,
21, 12, 11, 23, 7, 24,
22, 25, 8, 6

1 18 18 18 18
2 3 16 3 16
3 21 17, 20 4 17, 20
4 22, 4, 16, 17, 20, 11,

2, 14, 12, 7, 19, 5,
13, 10, 6, 15, 24, 9,
23, 8, 1, 25

14, 3, 15, 19, 2, 10,
13, 5, 1, 21, 9, 12,
11, 7, 24, 25, 4, 22,
8, 6, 23

21, 2, 12, 22, 16, 14,
7, 10, 11, 6, 17, 15,
19, 20, 5, 13, 9, 24,
23, 8, 1, 25

14, 3, 19, 15, 4, 2,
10, 21, 13, 1, 5, 9,
11, 12, 7, 24, 23, 22,
25, 8, 6

1 19 19 19 19
2 22 16, 20, 17 22 16, 20, 17, 18
3 21, 20 14 21, 20 14
4 18, 24, 14, 16, 7, 10,

11, 17, 8, 9, 23, 13,
15, 4, 12, 6, 25, 3, 2,
5, 1

10, 13, 3, 15, 2, 11,
5, 1, 18, 9, 23, 12,
24, 25, 7, 21, 22, 4,
6, 8

4, 18, 5, 2, 12, 13,
24, 14, 7, 16, 10, 11,
3, 15, 17, 8, 9, 23, 6,
25, 1

10, 15, 3, 13, 2, 4,
23, 1, 11, 9, 21, 5,
24, 12, 7, 25, 22, 8,
6

1 20 20 20 20
2 18 16 18 16
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Table A.2 — Continued
Cluster γj γ̃j γc

j γ̃c
j

3 19, 22, 16, 21 17, 15, 3, 14 5, 19, 16, 22, 21, 4,
3, 9, 17, 12, 2, 14,
10, 13, 7, 24, 15, 6,
8, 23, 11

17

4 9, 17, 5, 14, 24, 8,
23, 3, 7, 10, 13, 4,
15, 12, 6, 11, 2, 25,
1

13, 19, 10, 2, 1, 5, 9,
18, 12, 11, 7, 24, 25,
21, 4, 22, 6, 23, 8

25, 1 15, 3, 14, 19, 18, 13,
10, 4, 2, 1, 9, 5, 12,
21, 11, 7, 23, 24, 22,
25, 6, 8

1 21 21 21 21
2 18 16 2 16
3 9, 22, 3 17 12, 3, 4, 5, 6 17
4 4, 2, 12, 17, 16, 15,

6, 10, 1, 20, 19, 23,
7, 14, 11, 13, 5, 8,
24, 25

14, 3, 7, 15, 19, 18,
20, 13, 2, 10, 8, 5, 1,
9, 11, 12, 24, 25, 4,
22, 6, 23

18, 9, 15, 7, 13, 16,
22, 10, 11, 14, 1, 19,
20, 17, 23, 8, 25, 24

18, 14, 3, 19, 7, 15,
20, 4, 13, 2, 10, 1, 9,
5, 8, 11, 12, 23, 24,
22, 25, 6

1 22 22 22 22
2 21 16, 17 3, 2 16
3 18, 16, 3, 19, 20, 7,

5, 9, 15, 10, 17, 11,
6, 14, 13, 12, 24, 23,
8, 4

19 12 17

4 2, 25, 1 20, 14, 18, 3, 2, 15,
13, 7, 10, 5, 12, 11,
1, 9, 21, 24, 25, 23,
4, 8, 6

5, 16, 21, 15, 4, 13,
10, 6, 7, 9, 14, 18,
11, 20, 19, 17, 23,
24, 8, 1, 25

19, 18, 20, 14, 3, 15,
4, 2, 13, 7, 21, 10, 9,
1, 5, 11, 12, 23, 24,
25, 8, 6

1 23 23 23 23
2 9 9 9 9
3 19, 24 1, 7 19, 24, 4, 22, 2, 5,

12, 3, 11, 21, 10, 13,
15, 7, 6, 25, 20, 16,
18, 14, 8, 17

1, 7

4 22, 21, 10, 20, 16, 5,
18, 7, 15, 17, 8, 14,
13, 11, 6, 12, 4, 3,
25, 2, 1

14, 16, 10, 17, 13, 2,
15, 3, 11, 5, 19, 20,
12, 8, 18, 24, 25, 21,
6, 4, 22

1 14, 16, 17, 10, 18,
13, 15, 2, 3, 4, 19,
20, 11, 5, 21, 12, 8,
24, 22, 25, 6

1 24 24 24 24
2 8 7, 16 8 16, 7
3 18, 22, 21, 13, 20,

19, 9, 15, 10, 11, 14,
7, 23, 17, 16, 12, 6,
2, 4, 25, 3

14, 10 22, 21, 18, 13, 19, 2,
20, 12, 15, 4, 10, 9,
11, 14, 7, 3, 6, 16,
23, 17, 5, 25

14, 10

4 5, 1 1, 13, 9, 17, 3, 15, 2,
19, 11, 20, 5, 8, 12,
18, 23, 25, 6, 21, 4,
22

1 17, 1, 9, 13, 18, 19,
3, 15, 4, 2, 20, 11, 5,
23, 12, 21, 8, 25, 22,
6

1 25 25 25 25
2 11 11 12, 2, 4, 11, 13, 22,

19, 21
11

3 13, 21, 12, 22, 19, 4,
20, 24, 7, 16, 18, 14,
8, 6, 2, 23, 10, 9, 3,
17, 5, 15

10 3, 5, 20, 7, 16, 24,
10, 14, 6, 18, 8, 23,
9, 15, 17

10
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Table A.2 — Continued
Cluster γj γ̃j γc

j γ̃c
j

4 1 1, 13, 2, 17, 9, 14,
7, 5, 16, 3, 12, 19, 8,
15, 20, 18, 24, 21, 6,
4, 22, 23

1 1, 18, 19, 16, 17, 2,
13, 4, 9, 14, 21, 7, 3,
20, 23, 5, 15, 12, 8,
24, 22, 6

Notes: This table shows the clusters for identifying sectoral shocks for four different types of rankings. See Table A.1 for
a legend of industry-number codes. In the main text we use rankings derived from both material and capital flows, which
correspond to the downstream ranking, γc

j , and upstream ranking, γ̃c
j . We additionally show clusters for rankings γj

and γ̃j that are only derived from material flows, which allows for an assessment of the respective importance of capital
flows for a given sectoral shock. The table shows rankings for all 25 industrial production sectors even though we do not
identify sectoral shocks for all these sectors due to our feasibility criteria. In this set of infeasible sectoral shocks we also
include the special case of the Petroleum and coal products sector, i.e. rankings γ̃12 and γ̃c

12. For these two rankings the
restriction R1 that the origin sector has the largest total requirements value is violated, as the total requirement values
for sector 2, Oil and gas extraction, and sector 4, Support activities for mining (just for ranking γ̃c

12), are in fact larger
than for sector 12. We therefore do not identify sector-12 upstream shocks, i.e. consider them infeasible.
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Table A.3: Feasibility and downstream-upstream breakdown

Degree Feasibility Share SDev(HD)

Sectors lc l̃c γc
j (max) γ̃c

j (max) γc
j γ̃c

j

1. Logging 22 24 yes (5) no 100 –
2. Oil-gas 7 8 yes (5) yes (4) 45 55
3. Mining 20 22 yes (4) no 100 –
4. Support Mining 18 25 yes (6) no 100 –
5. Utilities 9 3 no yes (8) – 100
6. Food 13 1 no yes (7) – na∗
7. Textiles 12 15 yes (4) no 100 –
8. Apparel 25 16 no no – –
9. Wood 14 7 yes (4) no 100 –
10. Paper 8 10 yes (4) yes (4) 57 43
11. Printing 17 18 no yes (4) – 100
12. Petroleum-coal 11 2 no no – –
13. Chemicals 3 5 yes (5) yes (7) 67 33
14. Plastics 10 14 no yes (4) – 100
15. Non-metals 19 20 no no – –
16. Metals 5 11 yes (7) yes (5) 46 54
17. Fabr. metals 6 12 yes (5) yes (5) 51 49
18. Machinery 4 9 yes (6) yes (5) 64 36
19. Computers 1 6 yes (6) yes (6) 51 49
20. Electronics 16 17 no no – –
21. Vehicles 2 4 no yes (10) – 100
22. Other transport 15 13 no yes (6) – 100
23. Furniture 24 23 no yes (6) – 100
24. Misc 23 21 no no – –
25. Publishing 21 19 no yes (5) – 100

Notes: Column lc corresponds to the (out)degree measure of the total requirements matrix Hc, where
for every sector we calculate lcj =

∑N
i=1 h

c
ij and rank the values from highest to lowest. Equivalently

l̃c corresponds to the (in)degree measure of the total requirements matrix H̃c, based on rankings of
l̃cj =

∑N
i=1 h̃

c
ij . The next two columns show whether the sector shock complies with our feasibility criterion

and indicate in parentheses the maximum number of clusters that would still comply with the feasibility
cut-off of 0.01. The final two columns present for each sector’s historical contribution to aggregate Pseudo-
IP growth the share of volatility of up- and/or downstream shocks.
∗ The na∗ entry signals that despite being feasible, no upstream Food shock was found in the estimation.

15



Table A.4: Model parameterization: full vs. sub-samples

Additional sub-samples
Parameters Feb73 – Feb20 Feb73 – Dec83 Jan84 – Dec06 Jan07 – Feb20

M 1 1 1 1
K 15 12 15 13
P 1 1 1 1
s 0 0 0 0
r 1 1 1 1

Notes: K is the number of unobserved factors, M = 1 indicates that the target sector’s growth
rate is included as an observed factor, P is the number of VAR lags, s is the first period of impulse
responses in which the inequality and sign restrictions are imposed, r is the number of periods for
how long inequality and sign restrictions are imposed. We impose a different number of unobserved
factors for every sub-sample in order to harmonize the variability covered by the observed and
unobserved factors across these sub-samples. As in our main specification our benchmark is to
explain on average just more than 80 percent of sector growth.
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Table A.5: Identification using model-generated data: model comparisons

Flex. DGP/ Het. DGP/ Het. DGP/
Flex. ranking Flex. ranking Het. ranking Main text

Corr(Theory, FAVAR)
Mean 0.56 0.63 0.62 0.59
Min 0.48 0.46 0.38 0.17
Max 0.71 0.81 0.81 0.77

FAVAR coverage of Theory
Mean 0.87 0.87 0.87 0.90
Min 0.75 0.69 0.76 0.77
Max 0.96 0.99 0.99 0.98

Notes: Rows below Corr(Theory, FAVAR) report the mean, minimum, and maxium correlation between the-
oretical and median estimated shocks. Rows below FAVAR coverage of Theory report the mean, minimum,
and maxium coverage-ratio. We calculate for each identified shock the frequency by which the theoretical shock
lies within the 95-percent confidence interval. The first three columns report different combinations of model-
generated data and the rankings used for the identification exercise. Flex. DGP refers to data generated from
the flexible price model of Appendix C and Het. DGP to the heterogeneous price-stickiness model. Similarly,
Flex. ranking refers to sector rankings derived from the flexible price, and Het. ranking from the heterogeneous
price-stickiness model. Finally, the last column replicates the correlations and coverage ratios from the model
exercise of Section 6 for comparison.
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E Additional figures
Figure A.1: Ranking values
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Notes: The figure shows for each respective ranking the values of the underlying Leontief inverses. The first
value of each ranking corresponds to the origin sector with the remaining sectors sorted in descending order.
The left column shows the rankings for all 25 sectors and the right column illustrates the first five ranks. The
first two rows correspond to downstream (γj) and upstream (γ̃j) rankings based only on materials, whereas
the rankings in the last two rows are derived using both materials and capital flows (γc

j and γ̃c
j ).
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Figure A.2: IP conditional on sectoral shocks: 2-step estimator (demeaned, y-o-y growth, in percent)
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Notes: IP refers to demeaned, year-on-year (y-o-y), aggregate industrial production growth. The series is
created from individual sector output growth and sectors’ relative importance weights, hence called
Pseudo-IP. The black (x-marked) series shows IP growth conditional on only sectoral shocks. This historical
contribution is the sum of all effects that the identified sectoral up- and downstream shocks have on IP
growth, reported at the median and a 95%-percentile band. This figure, in contrast to Figure 3 of the main
text, is alternatively based on a two-step estimation procedure, as in Bernanke, Boivin, and Eliasz (2005) and
Boivin, Giannoni, and Mihov (2009).
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Figure A.3: IP conditional on sectoral shocks: sub-samples (y-o-y growth, in percent)
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Notes: The shaded areas correspond to the three sub-samples in the robustness analysis. IP refers to
year-on-year (y-o-y), aggregate industrial production growth (non-demeaned). The series is created from
individual sector output growth and sectors’ relative importance weights, hence called Pseudo-IP. The black
(x-marked) series shows IP growth conditional on only sectoral shocks. This historical contribution is the
sum of all effects that the identified sectoral up- and downstream shocks have on IP growth, reported at the
median. In addition, the blue (“+”-marked) series shows IP growth conditional on only sectoral shocks that
is constructed from the three separate sub-sample models. Sub-sample-dependent model parameterization is
also summarized in Appendix Table A.4.
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Figure A.4: IP conditional on sectoral shocks: 88 sectors (demeaned, y-o-y growth, in percent)
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Notes: IP refers to demeaned, year-on-year (y-o-y), aggregate industrial production growth. The series is
created from individual sector output growth and sectors’ relative importance weights, hence called
Pseudo-IP. The black (x-marked) series shows IP growth conditional on only sectoral shocks. This historical
contribution is the sum of all effects that the identified sectoral up- and downstream shocks have on IP
growth, reported at the median and a 95%-percentile band. This figure, in contrast to Figure 3 of the main
text, is alternatively based on a finer disaggregation of IP into 88 sectors. Here the number of unobserved
factors targets to explain at least 50, rather than 80, percent of sectoral growth rates in X, on average, for
reasons of parsimony.
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Figure A.5: IP conditional on sectoral shocks: identified set (demeaned, y-o-y growth, in percent)
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Notes: In contrast to Figure 3 of the main text, this figure shows the identified set of identified shocks
without estimation uncertainty. IP refers to demeaned, year-on-year (y-o-y), aggregate industrial production
growth. The series is created from individual sector output growth and sectors’ relative importance weights,
hence called Pseudo-IP. The black (x-marked) series shows IP growth conditional on only sectoral shocks.
This historical contribution is the sum of all effects that the identified sectoral up- and downstream shocks
have on IP growth, reported at the median and the lower and upper bound.
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Figure A.6: Contributions of sectoral shocks to IP (demeaned, y-o-y growth, in percent)
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Notes: IP refers to demeaned, year-on-year (y-o-y), aggregate industrial production growth. The series is
created from individual sector output growth and sectors’ relative importance weights, hence called
Pseudo-IP. The black (x-marked) series shows IP growth conditional on the respective sectoral shocks. The
series in the respective panels includes either a sectoral downstream, upstream, or both types of shocks (if
available) originating in the indicated sector, reported at the median.
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Figure A.7: Explanatory power of sectoral and aggregate shocks
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Notes: Histograms contain the (adjusted) R2 of regressing IP growth (at quarterly frequency) on a monetary,
fiscal, and technology shock from Ramey (2016), iterating through all possible combinations of available
shock proxies. Each regression contains the contemporaneous shock and respectively one, two, or three years
of its lags, without additional controls. The vertical line shows the (adjusted) R2 of regressing IP growth on
all the contemporaneous sectoral shocks jointly at quarterly frequency, without lags or additional controls.
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Figure A.8: Model-generated data: theoretical and structural empirical IRFs
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Notes: This figure compares theoretical and empirical impulse responses (IRFs) for identified sector shocks.
The feasibility criterion is the same as for the main specification. The left column of each figure shows the
responses in the origin sector, whereas the right column the response of aggregate output growth (IP). For
the empirical impulse responses 95- and 68-percentile bands are reported.
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