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Abstract

This paper quantifies the contribution of sector-specific supply and demand shocks to
personal consumption expenditure (PCE) inflation. It derives identification restrictions that
are consistent with a large class of DSGE models with production networks. It then imposes
those restrictions in a structural factor-augmented vector autoregressive model with sectoral
data on PCE inflation and consumption growth. The identification scheme allows to remain
agnostic on theoretical modeling assumptions, yet still gain structural empirical results:
sectoral shocks—while important to understand real fluctuations—did not have substantial
inflationary consequences since the Great Inflation in the 1970s and 80s, until now. While
the relevance of sector-specific shocks varied during the COVID-19 pandemic, the sources of
current inflation are primarily rooted in negative sectoral supply shocks, in particular from
end-2021 onward.
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1 Introduction

In the wake of lifted COVID-19 restrictions, the U.S. economy experienced rapid increases in
inflation. Annual headline inflation rose from well-below 2 percent back in March 2020 to more
than 6 percent in June 2022. Many explanations on the underlying sources of inflation draw on
sector-specific narratives: supply chain disruptions or consumer demand recovery manifest more
in certain economic sectors than in others. Assigning these types of shocks to the sectoral level
does not downplay their aggregate consequences. On the contrary, shocks originating in certain
parts of the economy spill over to other sectors and thereby generate effects of macroeconomic
relevance. The two narratives on current sources of inflation also hint at another aspect of the
ongoing policy discussion: is elevated inflation driven by supply or demand shocks? Considering
that likely both types of shocks play a role, a breakdown of the economy into heterogeneous
sectors can further help to disentangle the supply and demand factors leading to inflation.

In recent years—well before the onset of the COVID-19 pandemic—a growing interest emerged
in embedding production networks into macroeconomic models. These models allow one to study
the origin and detailed transmission patterns of economic shocks, including spillovers from
sector-specific (idiosyncratic) shocks. However, the majority of macroeconomic multi-sector
studies focuses either on how sector-specific shocks affect real aggregate activity or how aggre-
gate shocks propagate through the production network and influence aggregate activity and
inflation. A much smaller subset of the literature studies the effect of sector-specific shocks
on inflation. Moreover, quantifications of sectoral shocks typically rely on theoretical model-
ing choices and calibration. Few papers provide empirical evidence that isn’t reliant on these
modeling specifics, limiting empirical conclusions due to the risk of theoretical misspecification.

In this paper, my contribution is to cater to both the scientific and policy discussions.
First, I address how to obtain robust empirical quantifications of sectoral supply and demand
shocks, thereby limiting the effects from theoretical misspecification. To that end, I develop
an identification scheme that is consistent with a wide array of canonical dynamic stochastic
general equilibrium (DSGE) models with production networks. The method further ensures that
identified sectoral shocks are not conflated with aggregate shocks. Second, I use this scheme to
identify sector-specific supply and demand shocks in a structural time-series model and gauge
their aggregate consequences for inflation, and their implications for monetary policy.

My analysis proceeds in three steps. First, I infer sector-shock patterns from a range of pop-
ular DSGE model specifications with production networks, which are based on Pasten, Schoenle,
and Weber (2021). In a second step, I show the central insight behind my identification strategy:
for a given sectoral shock, many of these sector-shock patterns are robust across models, which
allows identification of the shock without relying on a specific theoretical model or calibration.

The intuition behind the identification scheme is the following. Different model specifications
deliver solutions on how economic shocks propagate through the network and affect prices and
quantities. Comparing these solutions can reveal very different quantitative effects of sectoral
shocks and their contributions to inflation. However, I show that for a given sector-specific shock
the solutions are, in many cases, similar with regards to how sectors are relatively affected by
sectoral shocks. For instance, the quantitative implications of a negative supply shock in a
specific manufacturing sector may be very different between a model with fully flexible prices
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versus one with sectoral heterogeneity in price stickiness. Nevertheless, my theoretical results
suggest that both models exhibit a similar (often the same) ranking of sectoral price and quantity
responses to the supply shock.1 This robustness in relative responses across models is what I
exploit as identification restrictions. It therefore allows me to remain agnostic on the myriad of
potential choices for structural modeling assumptions, yet still gain structural empirical results.

In a third step, I impose the restrictions in a structural factor-augmented vector autore-
gressive (FAVAR) model to identify sector-specific supply and demand shocks. While for a
given sectoral shock I exploit the robustness of sectoral responses across models, my strat-
egy requires a sufficient degree of cross-sectional heterogeneity across shocks: different sectoral
shocks propagate differently through the production network due to heterogeneity in how sec-
tors are connected to one another. This idea also extends to the identification of aggregate
shocks. Aggregate shocks can be considered as a combination of sectoral shocks: combining
sectoral shocks results in propagation patterns that are yet again different to those associated
with single sector-specific shocks.

My identification strategy delivers novel empirical evidence on the sectoral origins of in-
flation. While in most years sectoral supply and demand shocks exhibit limited contributions
to Personal Consumption Expenditure (PCE) inflation, there are two major periods since the
beginning of the 1960s where sectoral supply shocks take center-stage in terms of their total
aggregate contributions: the Great Inflation from the 1970s through mid-1980s, and the present.

Focusing on the sectoral origins of inflation in recent years, my empirical results show
that sectoral supply shocks are the predominant source of current increases in inflation. In
March 2020 sectoral shocks had negative effects on inflation with contributions of around -
1 percent. These contributions turned positive shortly thereafter and increased to more than
5 percent by June 2022. The nature of these contributions do not stem from one sectoral
source alone, but are distributed across numerous sectors with varying degrees of importance.
In between the two dates, I determine three subperiods with different sources of inflation.

Initially, between March 2020 and February 2021, with still below-two-percent headline
inflation, I find that negative sectoral supply-side shocks developed increasingly negative ef-
fects on aggregate prices. At the same time, sectoral demand shocks counterbalanced this
with fairly stable negative contributions to inflation. In the second period from March 2021
to September 2021, most strikingly, sectoral shocks do not explain the surge in inflation to
levels well-above 2 percent. The composition of sectoral shock contributions changed, however:
positive effects from sectoral supply shocks on inflation decreased and the negative impact of
sectoral demand shocks receded, keeping overall sectoral contributions to inflation fairly sta-
ble. In the final period, starting in October 2021, negative sectoral supply shocks increased
their inflationary contributions sharply, being the major source of inflation until the end of my
sample in June 2022. Sectoral demand shocks also started to develop increasing demand-pull
contributions in this period. Important to note is that there is still a large scope for potential
aggregate positive demand contributions as a source of inflation, especially in the second period
between March 2021 until September 2021.

1In other words, different types of models imply cardinal differences in sectoral responses to shocks. These
responses however do not change ordinal ranks across models.

3



Finally, I show that the trajectory of inflation’s sectoral origins in recent years has important
implications for how monetary policy should react. Many commentators argued in 2021 that
the initial increases in inflation were short-lived. The Fed took a similar stance in 2021, but in
November 2021 it started to gradually tighten policy (by reducing asset purchases) and then
increased the target range of the Federal Funds Rate in March 2022. I show that these shifts in
policy accord well with the rapid increase in inflationary contributions from negative sectoral
supply shocks. The flipside of this result is that it was a reasonable assumption up until the
second half of 2021 to consider sectoral supply shocks as short-lived. The Fed acknowledged
supply-side contributions to inflation, when it started tightening policy.2 My results show that
these supply-side origins are sectoral, i.e. combinations of sector-specific supply shocks with
macroeconomic relevance. Given that supply shocks, sectoral or aggregate, are difficult to act
upon by monetary policy because hiking interest rates further depresses already reduced real
activity, I argue that my results corroborate the Fed’s gradual approach.

The identification method and results presented in this paper connect to several strands of
the literature but predominantly contribute to the thin empirical literature on propagation of
sectoral shocks through production networks and their effects on inflation.

Most production-network papers are interested in how sectoral shocks affect real fluctu-
ations.3 Few papers explicitly study the impact of sectoral shocks on inflation empirically.
Carvalho, Lee, and Park (2021), Pasten, Schoenle, and Weber (2021), and Smets, Tielens, and
Van Hove (2019) examine how sectoral shocks affect prices and provide quantitative empirical
results but by relying on their respective DSGE models.4 A paper with a closely related ap-
proach to mine is Auer, Levchenko, and Sauré (2019) who empirically investigate spillovers of
inflation but through international input-output linkages. In contrast to my analysis on contri-
butions of supply and demand shocks to consumer prices, their analysis considers cost shocks
to producer prices.

Given the multitude of theoretical models on production networks, I derive my identification
of sector-specific supply and demand shocks from five different specifications of popular DSGE
models. I build in particular on Pasten, Schoenle, and Weber (2021) and map their model
setup to PCE data by distinguishing between intermediate and final goods producers, similarly
to Smets, Tielens, and Van Hove (2019). This makes it possible to combine input-output
(I-O) data, based on the North American Industry Classification System (NAICS), with PCE
time series on prices and quantities. The resulting suite of theoretical specifications, combined
with different calibrations, allows to summarize the network propagation of sectoral supply and
demand shocks in a wide array of theoretical settings. I focus on differences in sectoral price

2See for instance a speech by Jerome Powell, Chair of the Fed, on 21 March 2022.
3Earlier models are Horvath (1998, 2000) and Dupor (1999) and date back to Long and Plosser’s (1983) seminal

contributions. There have been many recent expositions, theoretical and empirical, on how sector-specific shocks
affect real activity, these include Shea (2002), Foerster, Sarte, and Watson (2011), Gabaix (2011), Acemoglu
et al. (2012), Carvalho and Gabaix (2013), Acemoglu, Akcigit, and Kerr (2016), Barrot and Sauvagnat (2016),
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), Atalay (2017), Baqaee (2018), Baqaee and Farhi (2019), Boehm,
Flaaen, and Pandalai-Nayar (2019), Carvalho et al. (2021), vom Lehn and Winberry (2021), Arata and Miyakawa
(2022), and Foerster et al. (2022).

4In recent work, using data on U.S. state-level price indices, Hazell et al. (2022) attribute a large share of
consumer price inflation between 1979 and 1981 to an increase in long-run inflation expectations and partly to
supply shocks. I argue that my results on the Great Inflation leave room for increases of expectations in the
build up to the 1980 inflation peak but less so around the first inflation peak in 1974.
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rigidity that range from a model with fully flexible prices to one with heterogeneity in price
stickiness and labor market segmentation. Unlike most of the existing literature which calibrates
models using only one year of I-O data, I calibrate each of the five models using annual data
over a 24 year period. This ensures that my results are robust to changes in the production
network over time, which has previously been evidenced by Foerster and Choi (2017).

In contrast to sectoral supply shocks, identification of sectoral demand shocks requires more
a-priori theory. Within the resulting narrower set of theoretical models, I show that identi-
fication of sectoral demand shocks is still robust to differing calibrations. Even though I use
time series data for PCE prices and quantities, my strategy allows to not only identify sectoral
consumer demand shocks but also sectoral supply shocks at producer level, without actually
having time series data on producer prices and quantities. By combining network data on
industry level (NAICS) with complementary conversion tables to PCE data (bridge tables), I
translate network propagation patterns of NAICS industries’ supply shocks to PCE data. Such
conversion is not trivial and dependent on modeling assumptions. I capture a variety of these
assumptions on how to map NAICS I-O data to PCE time series in the different models and
calibrations I use to derive my model-agnostic identification restrictions.

All model solutions deliver quantitative responses of prices and quantities in response to
sector-specific shocks. For a given sectoral shock and model, I rank these responses across sec-
tors, and group them into clusters that range from highly to weakly responsive to the shock.
It turns out that for a given sectoral shock there exist cluster compositions that are consistent
across many, often all, of the different model solutions. Exploiting this robustness of sector
clusters, I proceed by identifying structural sectoral supply and demand shocks in a Bayesian
FAVAR. First, factors are extracted from sectoral and aggregate monthly PCE inflation and con-
sumption growth rates, and then expressed in vector autoregressive (VAR) form. The FAVAR
structure and estimation are based on Bernanke, Boivin, and Eliasz (2005), Boivin, Giannoni,
and Mihov (2009), and Stock and Watson (2016).5 I then estimate structural VAR shocks
via heterogeneity restrictions, i.e. I require that for each sector-specific shock, sectoral impulse
responses are ranked so that they comply with the respective cluster composition. Structural
identification is implemented using standard algorithms from the VAR sign restriction literature,
in particular from Rubio-Ramírez, Waggoner, and Zha (2010).

Identification using heterogeneity restrictions, as introduced by De Graeve and Karas (2014),
have recently been further developed by Amir-Ahmadi and Drautzburg (2021) and Matthes and
Schwartzman (2021) to improve identification of aggregate shocks. In De Graeve and Schneider
(2023) we impose heterogeneity restrictions to identify sectoral shocks and their impact on
industrial production growth. My identification scheme to gain structural sectoral shocks builds
on the novel econometric framework developed in this previous work, but differs along two
dimensions: first, in De Graeve and Schneider (ibid.) we derive heterogeneity restrictions directly
from I-O data by using common network measures, such as Leontief inverses. In this paper, I
motivate and show the robustness of my restrictions across a range of theoretical DSGE models.

5Other empirical papers using factor or FAVAR methods with a focus on sectoral prices are Makowiak,
Moench, and Wiederholt (2009), Kaufmann and Lein (2013), Dixon, Franklin, and Millard (2014), De Graeve and
Walentin (2015), and Andrade and Zachariadis (2016). These contributions however do not solve the fundamental
identification problem of disentangling aggregate shocks from sectoral shocks with aggregate consequences.
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Second, my identification in this paper is not exclusively based on quantities, but I include a
price dimension in the time series model and identification framework. This not only allows to
explicitly study sector-specific shocks in a New Keynesian setting where prices are sticky, but
also to exploit for identification that sectors exhibit heterogeneity in price rigidity. Moreover,
identification with quantities and prices delivers a better separation of supply and demand
shocks and thereby allows to better assess the relevance of sectoral shocks for monetary policy.

A frequently adopted approach in a structural VAR setting is to separate supply from de-
mand shocks by imposing sign restrictions. The conventional economic wisdom underlying this
identification approach is reminiscent of a simple supply-and-demand analysis: supply shocks
induce quantity and price changes in opposite directions and, on the contrary, demand shocks
move quantity and prices in the same direction. In recent work, Shapiro (2022) classifies PCE
categories as supply or demand-driven using sign restrictions on individual PCE prices and quan-
tities. I contribute to this recent empirical strand of the literature by providing an identification
scheme that further allows to pinpoint the origins of the shocks. A simple sign restriction ap-
proach cannot disentangle the different sources that cause sectoral price and quantity responses.
In my framework I can determine whether the supply or demand shock originated in the sector
itself or spilled over from another sector.6

With regards to other connected literatures, there are recent contributions that investigate
the supply-and-demand breakdown of shocks during the initial phases of the COVID-19 pan-
demic in 2020.7 The focus of this paper is however on the heightened inflation environment in
2021 and 2022. Finally, there are numerous papers on the interaction of monetary policy and
production networks.8 I connect to this literature by showing that sectoral supply shocks are a
major concern for monetary policy in recent years.

In light of my results on the recent sectoral origins of inflation, I argue that the production
network literature was right to focus on mostly aggregate activity. While the focus of this
paper is on PCE inflation, my empirical model also delivers contributions of sectoral shocks
on aggregate PCE consumption growth. My results suggest that business cycle fluctuations of
consumption are somewhat better explained by sectoral shocks throughout my sample. This
paper is therefore also in line with a large part of the production network literature on the
importance of sectoral shocks in explaining real fluctuations, including De Graeve and Schneider
(2023).

The remainder of the paper is structured as follows. Section 2 sketches the theoretical
model setup and Section 3 derives the analytical solutions thereto. In Section 4, I cluster these
analytical solutions and motivate how sector clusters can serve as identification restrictions.
Section 5 outlines the FAVAR model and implementation of structural identification. Empirical
results on the sectoral origins of inflation and consumption growth are shown in Section 6. The

6In principle, I am also able to identify whether sectoral price and quantity responses are the result of an
aggregate shock, but the focus in this paper is on contributions from sectoral shocks.

7Guerrieri et al. (2022) and Baqaee and Farhi (2022) stress the occurrence of Keynesian supply shocks during
the pandemic. There are also recent empirical papers such as Brinca, Duarte, and Faria-e-Castro (2021) and
Cesa-Bianchi and Ferrero (2021) but they do not explicitly disentangle sectoral from aggregate shocks.

8See for instance Basu (1995), Bouakez, Cardia, and Ruge-Murcia (2009, 2014), Nakamura and Steinsson
(2010), Ozdagli and Weber (2017), Pasten, Schoenle, and Weber (2020, 2021), Ghassibe (2021), Baqaee, Farhi,
and Sangani (2022), La’O and Tahbaz-Salehi (2022), Karadi, Schoenle, and Wursten (2022), and Rubbo (2022).
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section proceeds by investigating implications for monetary policy. Section 7 concludes.

2 Theoretical model framework

The identification restrictions in my empirical model are derived from various multi-sector
DSGE model solutions. To generate these solutions I use Pasten, Schoenle, and Weber’s (2021)
multi-sector model, which nests several popular variants used in the literature. The theory
model I present in this section is therefore quite similar to their model framework but with two
noteworthy adjustments, that are the following: first, I provide a mapping from network I-O
data for NAICS industries to PCE time series data on consumption expenditures. I use a similar
approach to Smets, Tielens, and Van Hove (2019) who split production into intermediate goods
producers, corresponding to NAICS industries, and into final goods producers that assemble
PCE consumer goods. Intermediate goods producers use labor and intermediate inputs to
produce one of J intermediate goods. Final goods producers transform intermediate goods into
one of Z consumption categories that are consumed by households. For both types of producers,
every sector includes a continuum of firms producing an intermediate good, j, or consumption
good, z, respectively.

Second, I focus on two types of shocks: similarly to Pasten, Schoenle, and Weber (2021) I
include sector-specific technology shocks. In my setting, these shocks affect intermediate goods
producers. Moreover, I include consumer demand shocks that change the composition of the
consumption good basket.

Overall, there are three types of heterogeneities in the production sector that, taken to-
gether, I exploit for identification in my empirical model: intermediate goods producers are
heterogeneous with respect to their I-O linkages. Both intermediate and final goods producers
are heterogeneous in size as well as in terms of nominal price rigidity.

2.1 Households

A representative household maximizes utility of consumption and disutility from hours worked:

max
{Ct,Ljt}∞t=0

E0

∞∑
t=0

βt

C1−σ
t − 1

1− σ
−

J∑
j=1

gj
L1+ϕ
jt

1− ϕ

 , (1)

subject to

J∑
j=1

WjtLjt +
J∑

j=1

Πjt +
Z∑

z=1

Πzt + It−1Bt−1 −Bt = P pce
t Ct , (2)

J∑
j=1

Ljt ≤ 1 , (3)

where Wjt are sector-specific wages paid for labor Ljt employed in intermediate goods sector
j = 1, . . . , J . Households receive profits, Πj,t−1, from intermediate-goods-producing firms and
profits, Πz,t−1, from final-goods-producing firms, Πj,t−1. A term with bonds, Bt−1, paying
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gross interest rate, It−1 completes the left-hand-side of the budget constraint. In absence of
government spending, capital formation, and international trade, aggregate consumption, Ct,
coincides with GDP and the consumer price index, P pce

t , with the GDP deflator. The aggregate
consumption bundle is composed of Z consumption categories:

Ct ≡

[
Z∑

z=1

ω
1
η
cze

η−1
η

fztC
1− 1

η

zt

] η
η−1

. (4)

Sectoral consumption, Czt, corresponds to consumption of goods within PCE category, z. PCE
sectors differ in terms of sector size which is captured by vector Ωc ≡ [ωc1, . . . , ωcZ ]

′, where∑Z
z=1 ωcz = 1. Sectoral consumption weights, ωcz, are subject to consumer demand shocks, fzt,

that change the composition of demand. This means that
∑Z

z=1 fzt = 0. Consumption weights
correspond to steady-state ratio of sectoral to aggregate consumption, i.e. ωcz ≡ Cz

C . Sectoral
demand, Czt is standard and equal to:

Czt ≡ ωcz

(
Pzt

P pce
t

)−η

Ct . (5)

On the supply-side aggregating sectoral consumption is done in the following way:

Czt =

[
n
− 1

θ
z

∫
=z

Czt(q)
1− 1

θ dq

] θ
θ−1

, (6)

where Czt(q) is consumption of a product of firm q from PCE category z. There is a continuum
of consumption goods produced, where every good is indexed by q ∈ [0, 1], and sorts into one of
the PCE categories, z. More formally, there are Z subsets, {=̃z}Zz=1, that correspond to the PCE
sector size measure, {ωz}Zz=1. Note that the elasticity of substitution within sectors/categories,
θ, can differ to the elasticity of substitution across sectors/categories, η.

The aggregate PCE price index is defined as:

P pce
t ≡

[
Z∑

z=1

ωczP
1−η
zt

] 1
1−η

, (7)

where Pzt is the PCE price index of category z. The first order condition of the household
maximization problem is then equal to:

Wjt

P pce
t

= gjL
ϕ
jtC

σ
t , (8)

1 = Et

[
β

(
Ct+1

Ct

)−σ

It
P pce
t

P pce
t+1

]
. (9)

As in Pasten, Schoenle, and Weber (2021), labor markets are sector-specific and allow for
different wages. Parameters {gj}Jj=1 are calibrated to ensure a symmetric steady state.
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2.2 Intermediate goods producers

Intermediate goods firms use labor and inputs from other sectors to produce a good j. The
production function for a firm r ∈ j with sector-specific technology, ajt, is the following:

Yjt(r) = eajtL1−δ
jt (r)M δ

jt(r) , (10)

where δ is the intermediate input share in production. Intermediate inputs used by firm r of
sector j, Mjt(r) are:

Mjt(r) =

 J∑
j′=1

ω
1
η

jj′M
η−1
η

jj′t (r)


η

η−1

. (11)

The aggregator weights, {ωjj′}j,j′ , govern the I-O relationship between intermediate-goods firms.
These weights are included in the symmetric I-O coefficient matrix Ω ∈ RJ,J , where each row
of the matrix sums to one. An element ωjj′ is the steady-state share for goods from sector j′ in
the intermediate input use of sector j. Again more formally, there are J subsets, {=j}Jj=1, that
correspond to the size measure for intermediate goods producers, {nj}Jj=1, where

∑J
j=1 nj = 1.

Input use of firm r ∈ j can be further decomposed into input use from a specific sector j′:

Mjj′t(r) =

[
n
− 1

θ
j′

∫
=j′

Mjj′t(r, r
′)1−

1
θ dr′

] θ
θ−1

, (12)

which aggregates input uses for firm r of sector j from all firms r′ of sector j′.
Optimal demand from a firm r in sector j for inputs j′, and more granularly, for inputs from

firm r′ in sector j′ are such that:

Mjj′t(r) = ωjj′

(
Pj′t

Pm
j′t

)−η

Mjt(r) , (13)

Mjj′t(r, r
′) =

1

nj′

(
Pj′t(r

′)

Pj′t

)−θ

Mjj′t(r) . (14)

For a sector j the price index of the intermediate input bundle, Pm
jt , is equal to:

Pm
jt =

 J∑
j′=1

ωjj′P
1−η
j′t

 1
1−η

, (15)

where the price for sector j goods is given by:

Pjt =

[
1

nj

∫
=j

P 1−θ
jt (r)dj

] 1
1−θ

. (16)

As in Pasten, Schoenle, and Weber (2021) I use a simple information friction to model sectoral
price rigidity which I introduce in the next section. Alternatively, a model description of a
Calvo pricing problem can be found in Appendix A.
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2.3 Final goods producers

The production function for a final goods producer q ∈ z is simply given by:

Yzt(q) =Mzt(q) , (17)

where the bundle of intermediate goods used by firm q is:

Mzt(q) =

 J∑
j=1

k
1
η

zjMzjt(q)
η−1
η


η

η−1

. (18)

The bridge matrix, K ∈ RZ,J , with elements kzj maps the J intermediate goods and prices
into Z consumption equivalents. Similarly to intermediate goods producers, the quantity a firm
q ∈ z buys from intermediate goods sector j is equal to:

Mzjt(q) =

[
n
− 1

θ
z

∫
=z

Mzjt(q, r)
1− 1

θ dr

] θ
θ−1

, (19)

with Mzjt(q, r) being the amount of goods firm q ∈ z buys from a firm r ∈ j. I assume
that the cross-sector and within-sector elasticities of substitution, η and θ, are the same as for
households. The input price for final goods producers, Pm

zt is then given by

Pm
zt =

 J∑
j=1

kzjP
1−η
jt

 1
1−η

. (20)

The pricing problem is analogous to intermediate goods sectors.

2.4 Market clearing

Clearing of the bond market implies that Bt = 0. Market clearing of final-goods markets entails
that: ∫

=z

Yzt(q)dq =

∫
=z

Czt(q)dq , (21)

Mzjt = kzjYzt , (22)

Yzt =Mzt = erztCzt . (23)

Given that labor and intermediate-goods markets also clear, supply and demand for firm r ∈ j

leads to:

Yjt(r) =

J∑
j′=1

∫
=j′

Mj′jt(r
′, r)dr′ +

Z∑
z=1

∫
=z

Mzjt(q, r)dq , (24)
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and on sectoral level to:

Yjt =
J∑

j′=1

Mj′jt +
Z∑

z=1

Mzjt . (25)

The full set of log-linearized first order conditions as well as steady state are included in the
Appendix.9

3 Analytical solutions for a suite of theoretical models

Given the model described in the previous section, I set up five different specifications/cali-
brations that reflect common approaches in the literature to model production networks.10 To
derive analytical solutions to these specifications I closely follow Pasten, Schoenle, and Weber
(2021). While my approach is quite similar to theirs, the solutions presented in this paper differ
with regards to how producer prices, captured by J-by-1 vector pim

t , map into consumer prices,
included in Z-by-1 vector ppce

t . My model allows for different degrees of heterogeneity between
consumer and producer prices and explicitly models the pass-through from intermediate goods
producers at NAICS level to final goods producer providing PCE consumption goods.

The first three of the five specifications assume that the inverse-Frisch elasticity is zero,
ϕ = 0, which shuts down network propagation of shocks through labor market segmentation.
The first, and simplest, specification assumes that all prices are fully flexible. Next, I include a
model with homogeneous price stickiness, i.e. all producer prices, pim

t , and all consumer prices,
ppce
t exhibit the same degree of price stickiness. In a third specification I assume heterogeneity

in price stickiness for producer and consumer prices using estimates on average price durations
from Nakamura and Steinsson (2008) and Peneva (2011).11 Finally, the fourth and fifth model
specification assumes heterogeneity in price stickiness and also allows for a positive inverse-
Frisch elasticity. This activates an additional network propagation channel via upstream effects
through wages.

A second difference to the setup in Pasten, Schoenle, and Weber (2021), is the inclusion
of sectoral demand shocks. I include sectoral demand shocks that change the composition of
the households consumption basket. While in all five specifications sectoral productivity shocks
have effects on sectoral prices, sectoral demand shocks require that the inverse-Frisch elasticity
is positive, ϕ > 0. The reason is that with ϕ = 0 sectoral demand shocks have no downstream
effects on prices. This is a well-known result in multi-sector models with constant returns to
scale in production and without heterogeneity in sectoral wages. In these types of models prices
are independent from the demand side.12 By allowing wages to respond to labor demand, via
ϕ > 0, sectoral demand shocks can generate upstream effects and affect prices. A positive
inverse-Frisch elasticity also allows for sectoral supply shocks to generate additional upstream

9These appendices assume Calvo pricing for intermediate and final goods producers.
10In principle, nothing speaks against adding other types of models and specifications to this suite and test

whether solutions thereto comply with the common network propagation patterns that I exploit for identification
in my empirical model later on.

11More information on sectoral price durations are illustrated in Section 4.3.
12See Acemoglu, Akcigit, and Kerr (2016) for a proof on why sectoral demand shocks, in their case sectoral

government spending shocks, do not generate effects on prices in such a model.
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effects to their otherwise downstream propagation through the network.
Departing from log-linearized first-order conditions around the stochastic steady state, I

impose simplifying assumptions to generate analytical solutions for prices, consumption, and
wages. I present these solutions separately for supply and demand shocks.

3.1 Analytical solutions in simplified models: sectoral supply shocks

Abstracting from sectoral demand shocks (i.e. fzt = 0 for z = 1, . . . , Z), this subsection derives
analytical solutions in the presence of sectoral supply shocks, ajt.

(i) First, the inverse-Frisch elasticity, ϕ, is set to zero. This assumption is lifted later on.

(ii) Monetary policy fully stabilizes nominal GDP growth:

ppcet + ct = 0 . (26)

This rule can be generalized to incorporate additional monetary-policy regimes, but its
exact specification is not crucial for identification of sectoral shocks.

(iii) A simple information friction models price rigidity. This applies to both intermediate and
final goods producers:

Pjt =

Et−1

[
P ∗
jt

]
with probability λj ,

P ∗
jt with probability 1− λj ,

(27)

Pzt =

Et−1 [P
∗
zt] with probability λz ,

P ∗
zt with probability 1− λt ,

(28)

where the respective λj or λz is the probability by which a firm needs to set its price before it
can observe the shocks. These probabilities are calibrated using estimates on sectors’ average
price durations. In addition, I assume that households have log utility: σ = 1.

3.1.1 All simplifying assumptions applied

Assumption (i) implies that the first-order condition for the labor-supply decision simplifies to:

wjt = ppcet + ct . (29)

Monetary policy described in (ii) implies that there is a simple relationship between aggregate
consumption and aggregate PCE prices:

ct = −ppcet . (30)
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Finally, the information friction assumed under (iii) leads to the following relationships of prices
and marginal costs for both intermediate and final goods producers:

pjt = (1− λj)mcjt , (31)

pzt = (1− λz)mczt . (32)

In Appendix D I show how these assumptions, together with the log-linearized first-order
conditions, allow the following closed-form solutions for sectoral and aggregate prices. Sectoral
prices for intermediate goods producers solve:

pim
t = −X̂imat , (33)

with

X̂im ≡
[
I− δ(I−Λim)Ω

]−1
(I−Λim) , (34)

The multiplier matrix, X̂im, which maps productivity shocks to intermediate goods prices, takes
the form of a price-rigidity-adjusted Leontief inverse. It augments the I-O matrix, Ω, with
matrix Λim that is a diagonal matrix including all price-rigidity probabilities, λj . Furthermore,
sectoral PCE prices are downstream to producer prices and hence solve:

ppce
t = −(I−Λpce)KX̂imat , (35)

and sectoral consumption expenditures are given by:

ct =
[
ηI+ (1− η)ιΩ′

c

]
(I−Λpce)KX̂imat . (36)

Diagonal matrix Λpce is the final-good equivalent to matrix Λim, column-vector Ωc captures the
Z consumption shares, and ι is a column vector of ones of the appropriate dimension. Aggregate
PCE prices are then a weighted average of sectoral PCE prices:

ppcet = −Ω′
c(I−Λpce)KX̂imat , (37)

from which aggregate consumption directly follows as ppcet = −ct under assumption (ii).

3.1.2 Allowing for labor market heterogeneity

As in Pasten, Schoenle, and Weber (2021), I next relax the zero assumption on the inverse-Frisch
elasticity, ϕ, imposed by assumption (i). In Appendix D I show that the multiplier matrix, X̂im,
has then the form:
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X̂im ≡
[
I− δ

(
I−Λim

)
Ω

− (1− δ)
(
I−Λim

)
Θ′−1(

θimp + θpcep (I−Λpce)K− θcΩ
′
c (I−Λpce)K

) ]−1

(
I−Λim

) [
I+ ϕ(1− δ)Θ′−1

]
,

(38)

where

Θ′ ≡ (1 + δϕ) I− ψ (1 + ϕ)D−1Ω′D ,

θc ≡
[
I− ψD−1Ω′D

]
ι+ ϕ(1− ψ)D−1K′Ωc ,

θpcep ≡
[
I− ψD−1Ω′D

]
ιΩ′

c + ϕη(1− ψ)D−1K′ [ΩcΩ
′
c −Dc

]
,

θimp ≡ ϕ
[
ψ(η − 1)D−1Ω′DΩ+ η(1− ψ)D−1K′DcK− ηI+ δΩ

]
.

Diagonal matrix Dc includes all consumption shares, ωzc, whereas diagonal matrix D captures
all gross output shares, nj . Parameter ψ is the share of intermediate use in gross output.
While this solution appears somewhat complicated, it is, as before, just a combination of model
parameters that relates the exogenous variables, i.e. productivity shocks ajt, to sectoral prices,
and hence consumption. The solutions for prices and consumption are then the same as in the
previous section but using this version of X̂im.

3.1.3 Collecting model solutions for sectoral supply shocks

Collecting the two solutions for multiplier matrix X̂im, the five model specifications that I use
for identification are then given by the following:

X̂im ≡



[I− δΩ]−1 for specification (I) ,[
I− δ(I− Λ̄

im
)Ω
]−1

(I− Λ̄
im
) for specification (II) ,[

I− δ(I−Λim)Ω
]−1

(I−Λim) for specification (III) ,

(38) with ϕ = 1 for specification (IV) ,

(38) with ϕ = 2 for specification (V) ,

(39)

where Λ̄
im in specification (II) corresponds to a calibration with homogeneous price stickiness

and hence includes a constant parameter, λ, on its diagonal. For this case, I also assume that
Λ̄

pce
= Λ̄

im. Using Λ̄
im for the respective specification gives the following solutions for sectoral

prices:

pim
t = −X̂imat , (40)

ppce
t = −X̂pceat . (41)
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Multiplier matrix X̂pce corresponds to the five cases such that:

X̂pce ≡



KX̂im for specification (I) ,

(I− Λ̄
pce

)KX̂im for specification (II) ,

(I−Λpce)KX̂im for specification (III) ,

(I−Λpce)KX̂im for specification (IV) ,

(I−Λpce)KX̂im for specification (V) .

(42)

Sectoral consumption is then expressed as:

ct = X̂cat , (43)

with

X̂c ≡
[
ηI+ (1− η)ιΩ′

c

]
X̂pce . (44)

Finally, aggregate PCE prices and consumption solve:

ppcet = −Xpceat , (45)

ct = Xpceat , (46)

where

Xpce ≡ Ω′
cX̂

pce . (47)

3.2 Analytical solutions in simplified models: sectoral demand shocks

Now abstracting from sectoral supply shocks (i.e. ajt = 0 for all j = 1, . . . , J), this subsection
derives analytical solutions in presence of sectoral demand shocks, fzt. As illustrated above,
sectoral demand shocks require that they can propagate through labor markets. I therefore only
consider specifications with a positive inverse Frisch-elasticity, i.e. ϕ > 0. Under simplifying
assumptions (ii) and (iii), as well as assuming log utility, σ = 1, sectoral intermediate-good
prices solve:

pim
t = F̂imft . (48)

where the multiplier matrix, F̂im, is derived in Appendix D.3 and is given by:

F̂im ≡ P̂im
(
I−Λim

)
(1− δ)Θ′−1ϕ(1− ψ)D−1KDc . (49)
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The composite matrix P̂im is defined as:

P̂im ≡
[
I− δ

(
I−Λim

)
Ω

− (1− δ)
(
I−Λim

)
Θ′−1(

θimp + θpcep (I−Λpce)K− θcΩ
′
c (I−Λpce)K

) ]−1
,

(50)

using, in turn, the same composite parameters specified under supply shocks.

3.2.1 Collecting model solutions for sectoral demand shocks

As noted earlier, I only consider sectoral demand shocks under specifications (IV) and (V). I
therefore summarize multiplier matrix F̂im for the two cases as:

F̂im ≡

(49) with ϕ = 1 for specification (IV) ,

(49) with ϕ = 2 for specification (V) .
(51)

Similarly to productivity shocks, sectoral prices and consumption solve the following:

ppce
t = F̂pceft , (52)

ct =
[
(η − 1)ιΩ′

c − ηI
]
F̂pceft , (53)

where

F̂pce ≡

(I−Λpce)KF̂im for specification (IV) ,

(I−Λpce)KF̂im for specification (V) .
(54)

Aggregate prices then solve, using the respective multiplier matrix F̂pce for the two cases:

ppcet = Fpceft , (55)

(56)

where

Fpce ≡ Ω′
cF̂

pce . (57)

Finally, note that the total change of sectoral consumption is equal to consumption plus the
consumption demand shocks, ct + ft, which implies the following multipliers:

ct + ft = F̂c,f ft , (58)

where

F̂c ≡
[
(η − 1)ιΩ′

c − ηI
]
F̂pce , (59)

F̂c,f ≡ I+ F̂c . (60)
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Aggregate consumption is then equal to

ct = Ω′
cct +Ω′

cft , (61)

where Ω′
cft = 0.

4 Identification

In this section I introduce my framework to identify sectoral supply and demand shocks. I first
motivate the identification idea using simple, stylized examples and then present my clustering
approach and its results that deliver my final identification restrictions.

4.1 Sector-shock rankings in example economies

Take a generic three-sector economy described by the following quantities:<

Ω =

0.4 0.3 0.3

0.4 0.5 0.1

0.2 0.7 0.1

 , Ω′
c =

[
0.2 0.3 0.5

]
, (62)

where Ω is the I-O coefficient matrix, and Ωc the vector of consumption shares. I further
assume, for sake of simplicity, that the inverse-Frisch elasticity is zero (ϕ = 0) and that the
bridge matrix, K, is the identity matrix.13 Moreover, I only consider sectoral supply shocks,
ajt, in this example. The solution of sectoral intermediate and PCE prices are then equal to:

pim
t = −X̂imat , (63)

ppce
t = −X̂pceat , (64)

with the multiplier matrices, as derived in the previous section, given by:

X̂im ≡
[
I− δ(I−Λim)Ω

]−1
(I−Λim) , (65)

X̂pce ≡ (I−Λpce)X̂im . (66)

In response to sector-specific shocks, the multiplier matrix X̂pce contains the relevant price
responses of PCE categories in the corresponding columns. For instance, a positive sector-
2 shock would imply that a2t > 0 and a1t = a3t = 0. The relevant price responses are then
contained in the second column of X̂pce. Ranking these responses indicates which PCE category
responds the most to the sector-2 supply shock. In the following, I show that these sector
rankings are fairly robust across model specifications.

Figure 1 illustrates the robustness of sector rankings across a few different cases: I compare
the values of X̂pce under fully flexible prices with three differing calibrations regarding sticky
prices. Panel 1a contrasts the economy with flexible prices to one with homogeneous PCE
and intermediate price rigidity. Fully flexible prices are equivalent to setting Λim = Λim = 0,

13A bridge matrix, K, that is the identity matrix implies that every final good firm produces its final (PCE)
good using one intermediate good exclusively.
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whereas homogeneous PCE and intermediate price rigidity imply that the diagonal elements
of Λpce and Λim are equal to constants λpce, λim ∈ (0, 1), respectively. Here, I set the average
price duration for all prices equal to one month, which implies frequencies of λpce = λim =

1− (1− exp(−1/1) = 0.37. Despite the introduction of price stickiness, all rankings are exactly
the same as under flexible prices. The reason is that homogeneous price rigidity scales the
multiplier matrices X̂im and X̂pce by a constant factor but leaves the sector rankings unchanged
in this example. The numbers in parentheses in Figure 1 refer to the actual multiplier values
for the flexible and sticky price economies, respectively. While rankings stay the same, the
introduction of sticky prices leads to overall smaller multipliers. This is consistent with the
notion that price stickiness reduces the pass-through of economic shocks.

The second calibration, shown in Panel 1b, introduces heterogeneity in price stickiness.
Here, I assume that the second intermediate good sector has more rigid prices than all other
prices by setting the average duration to 4 months, which implies λim2 = 0.78. In this case,
sectoral rankings change for a sector-1 shock but only at rank 2 and 3. Increasing the degree
of stickiness for sector 2’s intermediate prices switches the relative importance of sector 2 and
3 as downstream customers for sector 1’s materials. Under flexible (and homogeneously sticky)
prices, sector 2 responds relatively stronger than sector 3 to supply shocks originating in sector
1. The reason is that sector 1 is a more important direct input supplier for sector 2 than for
sector 3, as ω1,2 > ω1,3. This also translates, in absence of heterogeneous price rigidities, to
overall larger responses in sector 2 compared to 3, given all direct and indirect network effects.
Increasing the frequency of price changes in sector 2 then switches the importance of sector 2
and 3 as downstream customers to sector 1. Sector 2’s prices now change less than in sector
3, whose prices are more flexible. Even though sector 1’s ranking changes at ranks 2 and 3,
crucially the first rank is not affected. The largest response to a sector 1 shock is observed
in sector 1 itself, across both calibrations. Furthermore, note that the remaining rankings for
shocks originating in sector 2 and 3 remain unchanged across the two calibrations.

Finally, Panel 1c introduces an additional layer of heterogeneity by increasing the average
price duration for sector 3’s PCE prices to 6 months, i.e. λpce3 = 0.85. Compared to the previous
example, the introduction of additional price rigidity for sector 3’s PCE prices balances out
the higher rigidity of sector 2’s intermediate prices and leads to an overall ranking for sector-1
shocks that is the same as for the flexible economy.

However, the ranking for a sector-2 shock changes between calibrations. The newly intro-
duced stickiness of sector 3’s prices makes sector 3 respond less to sector 2 shocks than in sector
1, which has more flexible prices than sector 3, even though sector 2 is a larger input provider
for sector 3 than sector 1, as ω3,2 > ω3,1. Crucially, the introduction of heterogeneity only
affects ranks 2 and 3 and not the highest rank: sector 2 has the largest response to sector 2
shocks for all calibrations.

Figure 2 summarizes the effects of the three calibration exercises on the sectoral contributions
to aggregate price responses. The figure ranks the relative importance of the three sectoral
shocks for aggregate prices. Similarly to the sector rankings, homogeneous price rigidity, shown
in Panel 2a, has the same ranking as an economy with flexible prices. In my example setup,
shocks to sector 2 have a larger impact on aggregate prices than sector 1 and sector 3. The
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Figure 1: Sectoral shocks in example economies: flexible vs. sticky prices
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Notes: The figure uses the example economy described by equation (62). Numbers in parentheses
are the actual values of the multiplier matrix X̂pce. The first number corresponds to the value for
the flexible-price economy and the second to the respective sticky-price economy.

introduction of heterogeneity in price rigidity, shown in Panel 2b and 2c, has more severe
implications for aggregate contributions than for the sector rankings. In Panel 2b, the now
stickier intermediate prices in sector 2 mutes the importance of sector-2 shocks on aggregate
prices and thereby moves sector-2 shock contributions from the first to the last rank. Similarly,
in Panel 2c the introduction of stickier PCE prices in sector 3 reduces the contribution of sector-
3 shocks and switchers the ranking again. This example illustrates that identification of sectoral
shocks is robust at sectoral level but not necessarily with regards to the contribution of sectoral
shocks to aggregate prices (and quantities equivalently).
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Figure 2: Aggregate contributions of sectoral shocks: Flexible vs. sticky prices
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Notes: The figure uses the example economy described by equation (62). Numbers in parentheses
are the actual values of the multiplier matrix Xpce. The first number corresponds to the value for
the flexible-price economy and the second to the respective sticky-price economy.

4.2 Sectoral versus aggregate shocks

Figure 3 presents a second type of example, which is taken from De Graeve and Schneider (2023).
In there, we motivate the differences between sectoral and aggregate shocks with regards to their
propagation patterns. In this example, a generic sector 1 sells to sector 3, sector 2 sells to sector
4, and both sector 3 and 4 sell to sector 5. The first panel shows a shock in sector 1. Given
the heterogeneous weights on the connections between sectors, a sector-1 shock has the largest
impact in sector 1. The second most affected sector is 3, followed by sector 5. In this example,
a sector 1 shock has, in absence of any relevant network connections, no effect on sector 2 or 4.
The overall cross-sectional propagation pattern is summarized in the ranking below.

In a second graph, the cross-sectional ranking in response to a sector-2 shock is considered.
Comparing this ranking from high to low (2, 4, 5, 1, 3) to that of a sector-1 shock (1, 3, 5, 2, 4)
reveals that the propagation pattern between the two sectoral shocks is completely different.
Due to heterogeneity in network linkages, a sector-1 shock can be identified and separated from
a sector-2 shock, based on its ranking in the cross-section.

Finally, the third graph illustrates a combination of a sector-1 and sector-2 shock. The
underlying idea is that aggregate shocks can be considered as a combination of sectoral shocks.
The implied cross-sectional ranking (5, 1, 2, 3, 4) is yet again different to the previous two cases.
Intuitively, by mixing shocks 1 and 2, the combined-shock generates its own distinct propaga-
tion pattern. In contrast to this stylized example, these ranking differences are even more
pronounced in larger economies with more theoretical possibilities to generate heterogeneous
network connections. My identification, which is based on such sector rankings, thereby ensures
that not only sector-specific shocks are disentangled from another, but also from aggregate
shocks.

In De Graeve and Schneider (ibid.) we show that just a quantity variable alone allows to
identify sectoral shocks and to explicitly distinguish identification of aggregate shocks. In this
paper I also use a price variable for identification. This allows a much better separation of
supply and demand shocks.
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Figure 3: Stylized identification example: 3 shocks, 3 rankings
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Notes: This is a stylized example illustrating how different shocks, sectoral or aggregate, generally
imply different sector rankings. We look at three different shocks and rank the magnitude of the
responses: first, a shock originating in sector 1, second, a shock in sector 2, and third, a combination
of sector 1 and 2 shocks.
Source: De Graeve and Schneider (2023)

4.3 Theory calibration

Deriving the five supply-side specifications in equation (42) and two demand-side specifications
in equation (54) requires calibration of the I-O data and model parameters.

The input-share matrix, Ω, is derived from make and use tables of the BEA’s input-output
accounts for the United States at NAICS classification. I use annual I-O data for years 1997 to
2020 to derive Ω, consumption weight vector, Ωc, and NAICS-PCE bridge matrix, K. I compile
these matrices for 33 NAICS industries and 72 PCE categories, respectively. Appendix E.1
presents the derivation of the input-share matrix, Ω, and Appendix E.2 the derivation of the
bridge matrix, K.

Estimates for monthly frequencies of producer price changes are taken from Peneva (2011).
These estimates are based on 1995–1997 data and are only available for the older Standard
Industrial Classification (SIC). In Appendix E.3 I describe the necessary steps and assumptions
to convert these SIC estimates to NAICS.

Finally, frequencies of price changes for PCE categories are based on estimates by Nakamura
and Steinsson (2008). Their original estimates on frequencies and durations of price changes are
for 1998–2005 and available for Entry Line Items (ELI). I use the Bureau of Labor Statistics’
(BLS) concordance tables to transform ELIs to PCE categories. Appendix E.4 provides more
details on the procedure.

The following model parameters appear in equations (42) and (54) and therefore require
calibration: I set the elasticity of substitution across sectors/categories η = 0.5.14 As in Pasten,
Schoenle, and Weber (2021), the elasticity of substitution within sectors/categories is set to

14I use an alternative calibration with η = 1 which yields almost exactly the same composition of clusters that
I use for identification of sectoral shocks. There are only minor differences for a small number of shocks.
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θ = 6. The intermediate input share in production, δ, depends on the respective I-O data used
for calibration. For every annual I-O calibration, I derive the share of intermediate use in gross
output, ψ, which is used in turn to calibrate δ = ψ θ

θ−1 .

4.4 Clustering

The goal of this section is to derive my model-robust identification restrictions given the cal-
ibration and specifications presented earlier. The first step is to remove homogeneous price
stickiness, as motivated by the exercise presented in Figure 1. Homogeneous price stickiness
and flexible prices lead to the same sector rankings and therefore imply the same identification
assumptions. Considering supply shocks, I use the remaining specifications (I, III, IV, V) in a
clustering exercise.

I calibrate every specification with annual I-O data from 1997 to 2020. This yields 24
calibrations per specification and hence 96 versions of X̂pce in total. Similarly I use the two
specifications (IV, V) for demand shocks, amounting to 48 total versions of F̂pce. My goal is to
find robust features in X̂pce (F̂pce) across the 96 (48) versions. I define matrices X̂pce

r and F̂pce
r

that rank the columns of multiplier matrices X̂pce and F̂pce, respectively.
The intuition behind clustering is illustrated in Figures 4 to 6. In there I visualize for three

supply shocks the cross-sectional rankings across model specifications and input-output calibra-
tions. The bars summarize for the respective specification how often the price for the indicated
PCE category appears at ranks 1 to 6 across the 24 input-output calibrations. The examples
are chosen to highlight different types of sectoral shocks with regards to their robustness of
rankings. Figure 4 shows rankings for the Electrical equipment, appliance, and components. At
rank 1 the bar chart indicates which PCE category has the highest ranked price response. In
response to this specific supply shock the fifth category is the one with largest price responses
across all calibrations and specifications.15 At the second rank, with a large majority, it is PCE
category 2 that exhibits the next largest price responses. This example represents a sectoral
supply shock that is fairly easy to cluster. Regardless of calibration and specification it turns
out that in all cases PCE category 5 responds more than category 3, which responds more than
all remaining 70 categories in most cases.

Figure 5 summarizes rankings for supply shocks originating in Educational services. Inspect-
ing the cross-sectional rankings reveals more variation than in the previous example, yet still
allows for fairly straightforward clustering: a first cluster with categories 68 and 66, a second
cluster with category 67, and a third cluster including the remaining PCE categories.

Finally, Figure 6 illustrates a counter-example. Here it is much harder to define a cluster
that holds across specifications and calibrations. In fact, the cluster analysis introduced next
does not deliver a robust cluster for supply shocks in Management, administrative and waste
services. I hence label these types of shocks as infeasible and do not identify them in my
empirical model.

More specifically on the clustering exercise, I use a variety of standard algorithms to derive
a fixed number of three clusters for every shock. Recall that to identify a sector-specific shock,
the corresponding column of X̂pce or F̂pce can be ranked to derive the relative price (and

15A list that relates PCE indices used in this paper with PCE sector names is provided in Appendix Table A.7.
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Figure 4: PCE rankings for Electrical equipment, appliance, and components
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Notes: This figure summarizes the first six rankings for the sector-specific supply shock that
originates in the sector indicated in the title. The four models correspond, in this order, to
specification (I/II), (III), (IV), and (V). For every specification I consider 24 calibrations based on
I-O tables for the years 1997 to 2020. The bars summarize for the respective specification how often
the price for the PCE category appears at rank 1 to 6 across the 24 calibrations. A Corresponding
figure visualizing rankings for intermediate-goods prices can be found in Appendix I.

similarly consumption) responses to the shock. I apply the following clustering algorithms,
each with numerous setups: k-means, k-medoids, and hierarchical clustering, as well as a simple
decision algorithm that I specify based on ranking counts. I then compare clustering results
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Figure 5: PCE rankings for Educational services
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Notes: See notes to Figure 4.

Table 1: Feasible shocks

Shocks Cluster 1 Cluster 2 Cluster 3

Sectoral supply shocks: X̂pce
r

1 20 18, 28, 31, 55 Rest
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Table 1 — Continued

Shocks Cluster 1 Cluster 2 Cluster 3

3 38, 39 37 Rest
9 17 8 Rest
10 5 3 Rest
11 1 3, 10 Rest
12 4 25, 26, 39 Rest
13 12 9, 13, 14, 25, 26, 28, 39 Rest
14 31 18, 19, 55 Rest
15 22 16, 21, 24 Rest
19 3 6 Rest
21 2 25, 26 Rest
23 63 15, 51 Rest
24 62 60 Rest
28 66, 68 67 Rest
30 50 52 Rest
31 56 25, 26, 36, 38, 39, 54 Rest
32 45 1, 2, 25, 26, 38, 39, 46, 51, 53, 69, 70, 71, 72 Rest
(2, 17)∗ 25, 26 38, 39 Rest
(20, 21) 2 25, 26 Rest
(20–22) 2 25, 26 Rest
(30, 31) 56 25, 26, 36, 38, 39, 50, 52, 54 Rest

Sectoral demand shocks: F̂pce
r

(1–3) 1 2, 3, 10 Rest
(4–7) 2 3, 4, 5 Rest
(8–12) 1 Rest 25, 26, 38, 39
(13–17) 2 Rest 39
(18–20) 31 2, 18, 19, 20, 55 Rest
(21–24) 2 16, 21, 22, 23, 24 Rest
(25, 26) 25 26 Rest
(27–32) 2 Rest 39
(33–39) 39 38 Rest
(50–53) 50 52 Rest
(54–56) 56 36, 54 Rest
(57–62) 60, 62 57, 58, 59, 61 Rest
(63–72) 68 15, 45, 51, 53, 63, 66, 67, 70 Rest

Notes: The Shocks column includes all feasible sectors. The remaining columns indicate
the cluster composition. Note that for supply shocks, X̂pce

r , the shock index refers to the 33
NAICS sectors, whereas for demand shocks, F̂pce

r , indices correspond to the 72 PCE categories.
In the cluster columns, indices always refer to PCE categories. Final clusters for feasible
sector-specific supply shocks are determined based on the following specifications: shocks
using clusters based on specifications (I) to (V) are 1, 3, 10, 11, 15, 21, 23, 28, 30, (20, 21),
and (20-22); clusters based on specifications (III) to (V) are 9, 14, 19, 24, 32; and clusters
based on specifications (IV) and (V) are 12, 13, 31, (30-31). The remaining supply shocks are
infeasible to be identified. Shock (2, 17), indicated with an asterisk is infeasible but I consider
it in one of my exercises nevertheless.

individual categories. Instead, I aggregate individual categories to 15 broader classifications.
In Figure 7 I present three examples for sector-specific supply shocks and their respective

cluster. Panels in the left column compare a flexible price ranking (specification I/II) with that
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Figure 6: PCE rankings for Management, administrative and waste services
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Notes: See notes to Figure 4.

of heterogeneous price stickiness and labor market segmentation using ϕ = 2 (specification V).
The scatter plot contrasts the rankings across the two specifications. The red, blue, and black
frames correspond to the final cluster derived in the exercise described above. If the scatter
dots are within the colored frames, it means that the visualized cluster is consistent with both
rankings. Similarly in the right column, I contrast calibrations to different years (1997 vs.
2020) for specification (V). Comparing panels in the left column reveals that the first two sector
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Figure 7: Ranking comparisons across specifications & calibrations
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(b) Educational services
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Notes: The Figure shows for three examples, sector-specific supply shocks and their respective
cluster. If a scatter dot is not within its respective red, blue or black box, it implies that the cluster
is not consistent across the two depicted specifications/calibrations.

shocks are consistent across rankings, while the last row indicates a counter-example. Shocks
originating in this very sector, Professional, scientific, and technical services, are therefore
harder to identify.

The examples above highlight that not all clusters deliver useful identification assumptions.
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I therefore evaluate each cluster against a set of criteria to determine whether it is suitable for
identification or not.16

If I find that a cluster is consistent with more than 70 percent of the rankings and that
the cluster includes unique PCE categories, I label the identified shocks as feasible for identi-
fication. It turns out, as indicated by Appendix Table A.2 that all 15 demand shocks exceed
this threshold, while for sectoral supply shocks less than half the shocks exceed this threshold.
This may not be surprising for supply shocks as the cluster needs to match a fairly wide range
of specifications, across (I) to (V). I hence also consider clustering exercises using smaller sets
of specifications. In a second set I remove specification (I) (and hence II), and only cluster
across specifications (III) to (V), i.e. only using models with heterogeneity in price stickiness.
Similarly in an even tighter set, I cluster across specifications (IV) and (V), which is the same
set used for identification of demand shocks.

One further concern is that some PCE categories are ranked highly in several sector clusters.
These sort of problematic categories include for instance Motor vehicle fuels, lubricants, and
fluids or Natural gas. Cluster compositions that have any of these categories in their first
two clusters are likely reduced in their ability to identify the corresponding sectoral shocks. I
therefore check all clusters against these problematic sectors and make sure that the final cluster
composition includes other price categories that are not included in other shocks’ clusters. If
a sector cluster includes only problematic categories in the first cluster I label the shock as
infeasible. Table 1 summarizes the final set of clusters that I impose as identification restrictions.

5 Empirical model

Given the set of sector clusters, this section presents the empirical model I use to identify
sectoral supply and demand shocks. I first sketch the reduced-form model and then focus
on the implementation of my identification strategy. While the setup and estimation of the
reduced-form model is fairly standard, the innovation lies in the structural identification setup.

5.1 The reduced-form factor-augmented VAR

I use a similar reduced-form Bayesian FAVAR model as we do in De Graeve and Schneider
(2023). This model is in turn based on Bernanke, Boivin, and Eliasz (2005), Boivin, Giannoni,
and Mihov (2009), and Stock and Watson (2016):

xt = λxfxt + λyyt + εt with εt ∼ N (0, Rε) , (67)(
fxt

yt

)
=

P∑
p=1

φp

(
fxt−p

yt−p

)
+ ut with ut ∼ N (0, Qu) , (68)

where yt is an M -by-1 vector of observable factors. The composition of yt changes depending
on the clustering for the sector-specific shock that I intend to identify: I treat all sectoral PCE
consumption growth and sectoral inflation rates included in the first cluster as observable factors.
Since the clusters for all feasible sectoral supply shocks are the same across consumption and

16Appendix F presents the cluster evaluation in more detail.

28



price variables, the respective price and quantity variables treated as observed factors always
stem from the same PCE sectors. For example, if for a given sector-specific shock the first
cluster comprises of PCE sector z, then both cz and pz are treated as observable factors. My
identification of sectoral demand shocks does not require that the first clusters of consumption
and price variables are the same. For demand shocks I hence just use sectoral price variables
(in the first cluster) as observable factors.17 The Nx-by-1-vector xt includes aggregate PCE
consumption growth and inflation rates, as well as all sectoral consumption growth and inflation
rates other than those sectoral variables used as observable factors. I extract the unobservable
factors fxt by means of the first K principle components of xt. Factor loadings, λx and λy,
correspond to those unobservable and observable factors, respectively.

The VAR process described by the transition equation has parameters φp with P numbers of
lags. Reduced-form shocks, ut, are associated with variance-covariance matrix Qu and the mea-
surement errors, εt with the diagonal variance matrix Rε. The state-space system (67) and (68)
can be expressed more compactly in companion form:

Xt = ΛFt + Et , (69)

Ft = ΦFt−1 + Ut , (70)

where all parameters and variables of the state-space model are stacked as

Xt ≡ (x′t, y
′
t)
′ , (71)

ft ≡ (fx
′

t , y
′
t)
′ , (72)

λ ≡

[
λx λy

0M×K IM

]
, (73)

Ft ≡
(
f ′t , f

′
t−1, . . . , f

′
t−P+1

)′
, (74)

Et ≡
(
ε′t,0

′
M×1

)′
, (75)

Ut ≡
(
u′t,0(K+M)(P−1)×1

)′
, (76)

Φ ≡

[
φ1 · · · φP

IKM(P−1) 0KM(P−1)×KM

]
, (77)

Λ ≡
[
λ 0(Nx+M)×(K+M)(P−1)

]
. (78)

I estimate the model using the two-step estimation procedure of Bernanke, Boivin, and Eliasz
(2005) and Boivin, Giannoni, and Mihov (2009). Appendix G provides a detailed overview on
the estimation. In short, the first step uses principle components to estimate the unobserved
factors. I ensure that the unobserved factors do not capture dynamics induced by the observed
factor by following Boivin, Giannoni, and Mihov (2009). In the second step, the factors are
expressed in a reduced-form VAR with priors on parameters chosen as in Koop and Korobilis
(2009).

As in De Graeve and Schneider (2023), I estimate the model (67)-(68) for every sector-
17Including additionally all consumption growth rates for sectoral demand shocks would lead to a large total

number of factors which may affect the estimation. Appendix Table A.6 provides an overview over the sectors
included in the relevant clusters.
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Figure 8: Identification for (positive) sectoral supply shocks

−∂cz1/∂aj1

∂pz1/∂aj1

−∂pz1/∂aj1

∂cz1/∂aj1

t

cz , pz

cz : origin
pz : origin

(a) R1 consumption and prices

−∂cz1/∂aj1

∂pz1/∂aj1

−∂pz1/∂aj1

∂cz1/∂aj1

t

cz , pz

cz : origin
pz : origin

(b) R1 consumption; SR prices

−∂cz1/∂aj1

∂cz1/∂aj1

t

cz

cz : cluster 1
cz : cluster 2
cz : cluster 3

(c) R2 consumption

∂pz1/∂aj1

−∂pz1/∂aj1

t

pz

pz : cluster 1
pz : cluster 2
pz : cluster 3

(d) R2 prices

Notes: This illustration depicts different approaches to implement R1 and R2 type restrictions on
sectoral inflation and consumption growth rates in response to a positive sectoral shock in a generic
sector 1. I assume that the first cluster assigned to this shock only includes one PCE category. The
dashed corridors refer to the corridor imposed by R1 restrictions. SR refers to identification using
sign restrictions.

specific shock separately: for every sector-specific shock, the first cluster comprises a different
set of sectors. Including these very sectors’ consumption growth and inflation rates explicitly
as observed factors allows to capture enough variance to identify the shock; unobserved factors
may not be able to achieve that. The partial identification of individual sectoral shocks comes
at a cost. Only joint identification can fully ensure that sectoral shocks are orthogonal to
one another. However, my identification restrictions should rule out that partially identified
sector shocks are not correlated systematically. My identification scheme, presented next, can
be implemented using standard sign restriction algorithms as in Uhlig (2005), Rubio-Ramírez,
Waggoner, and Zha (2010).18

5.2 Structural identification using cross-sectional restrictions

The identification setup builds on De Graeve and Schneider (2023) and extends it with regards
to identification based on quantities and prices. I implement the sector-shock clusters derived

18I apply algorithms from the latter contribution. Amir-Ahmadi and Uhlig (2015) apply these standard sign
restriction algorithms in a FAVAR context.
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in previous sections as heterogeneity restrictions in the reduced-form FAVAR model to identify
structural shocks. Identification is based on comparing contemporaneous impulse responses.19

These are defined in the following way:

r(f)a = a , (79)

r(X)
a = λr(f)a , (80)

where a ∈ RK+M is an impulse vector that I check against the restrictions. Impulse response
vector r(X)

a is derived using the factors’ impulse responses, r(f)a . I map the latter to the former
via the factor loadings λ.

If the resulting impulse response complies with the restrictions I retain the identified draw.
The identification restrictions depend on the type of variable. For instance, to impose restric-
tions on sectoral prices, I therefore use a subset of impulse vector r(X)

a that only includes sectoral
prices. I denote this subset of impulse response as r̂(X)

a that depending on the context refers to
impulse responses of either sectoral inflation or consumption growth rates. For a given vector
r̂
(X)
a , I compare the sector elements against the restrictions, i.e. r̂(X)

a (i), for all i = 1, . . . , N .
For a given sector specific shock I define a strict ranking, γj , as:

γj = (γ1j , γ2j , . . . , γNj)
′ , (81)

where γj corresponds to the respective column of ranked multiplier matrices X̂pce
r or F̂pce

r . In
addition a cluster ranking, Γj , is defined as:

Γj ≡ (Γ1j ,Γ2j , . . . ,ΓGj)
′ , (82)

where G is the total number of imposed clusters. The individual clusters Γgj for sector j (or
PCE category) are composed of the strict rankings γj , such that:20

Γ1j ≡ (γ1j , . . . , γl1,j) ,

Γ2j ≡ (γ2j , . . . , γl2,j) ,

...

ΓGj ≡
(
γ(l(G−1)+1),j , . . . , γlG,j

)
,

where lg is an index for the last sector included in cluster g.21

Next, I define a few types of restrictions using strict or cluster rankings. I distinguish here
between restrictions that relate variables of sectors included in the first cluster against the rest
(R1 restrictions) from restrictions that compare adjacent clusters (R2 restrictions):

Consider a sector shock that has multiple PCE categories in its first cluster, an R1 restriction
19I only consider restrictions on impact and not at later horizons.
20Note that I use index j for a generic sector-shock, that could both be a sectoral supply or demand shock.
21Note that other than in De Graeve and Schneider (2023) Γ1j I allow the first cluster to contain more than

one γ1j .
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that requires a positive response of those variables is defined as:

min
{
r̂(X)
a (Γ1j)

}
> |r̂(X)

a (γij)|, ∀i = l1 + 1, . . . , N , (83)

and equivalently for a negative response:22

max
{
r̂(X)
a (Γ1j)

}
< −|r̂(X)

a (γij)|, ∀i = l1 + 1, . . . , N . (84)

Cluster restrictions of type R2 are defined in the following way; for a positive response:

min
{
r̂(X)
a (Γgj)

}
> max

{
r̂(X)
a (Γ(g+1),j)

}
, ∀g = 2, . . . , (G− 1) , (85)

and a negative response, such that:23

max
{
r̂(X)
a (Γgj)

}
> min

{
r̂(X)
a (Γ(g+1),j)

}
, ∀g = 2, . . . , (G− 1) . (86)

There are multiple ways to identify sectoral shocks. I first illustrate the approach for sectoral
supply shocks using sectoral inflation and consumption growth rates. Figure 8 summarizes the
different approach for a positive sectoral supply shocks. Note that in this illustrations I assume
that the first cluster only includes one PCE category. The first row illustrates two versions for
identification using R1 -type restrictions. Panel 8a depicts an R1 restriction on both price and
quantity variables. The restriction requires that price and quantity in the first cluster need to
have opposite signs and furthermore have the largest response among their respective variable
type (in absolute terms). This last requirement is indicated by the two corridors. In Panel 8b, I
illustrate a slightly weaker combination of restrictions. Here it is only the quantity variable that
adheres to an R1. Price responses are simply using a sign restriction. The bottom rows deal
with R2 restrictions. In Panel 8c, it is illustrated that the impulse responses of consumption
growth rates follows the imposed cluster. Note that it is permitted that some PCE prices have
responses of the opposite sign than the R1 categories, as long as they stay within the corridor
set by the R1 restrictions. Similarly, Panel 8d depicts R2 restrictions for PCE prices, which
respond negatively to a positive sectoral supply shock. Again opposite responses, i.e. a positive
price response, are permitted for some sectors towards the end of the cluster/ranking.

Next, I contrast identification of sectoral supply shocks with demand shocks. Sectoral de-
mand shocks require a modified approach with regards to R1 and R2 type restrictions. First,
I introduce the origin R1. I do not identify sectoral demand shocks for all 72 PCE categories
separately, but for broader categories that include a number of PCE categories. For instance,
the first demand shock is for Motor vehicles and parts, which consists of three individual PCE
categories (with index 1, 2, 3). I label these categories as the origin categories. In this case, a
positive demand shock requires that consumption in all three PCE categories increases. Since
sectoral demand shocks change the composition of the consumption basket, all other PCE cate-

22R1 -restrictions for shocks with just a single PCE category in the first cluster are simple given by r̂
(X)
a (γ1j) >

|r̂(X)
a (γij)| (positive response) and r̂

(X)
a (γ1j) < −|r̂(X)

a (γij)| (negative response) for all i = 2, . . . , N .
23R2 -restrictions for strict rankings are simple given by r̂

(X)
a (γij) > r̂

(X)
a (γ(i+1),j) (positive response) and

r̂
(X)
a (γij) < r̂

(X)
a (γ(i+1),j) (negative response) for all i = 2, . . . , (N − 1).
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Figure 9: Identification for (positive) sectoral demand shocks
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Notes: This illustration depicts different approaches to implement R1 and R2 type restrictions on
sectoral inflation and consumption growth rates in response to a positive sectoral demand shock.
The dashed corridors refer to the corridor imposed by R1 restrictions. No-LB refers to R1
restrictions without imposing a lower bound.

gories are subject to a negative direct demand effect. Depending on the network structure, some
consumption responses may turn positive but the majority of “other” responses stays negative.
The origin R1 captures this by stipulating that the least affected origin sector determines the
R1 corridor. All other quantity responses are restricted to stay within this corridor.

Formally I define the Origin R1 for a positive response as:

min
{
r(X)
a (Γori

j )
}
> |r(X)

a (γij)|, ∀i = lori + 1, . . . , N , (87)

and for a negative response as:

max
{
r(X)
a (Γori

j )
}
< −|r(X)

a (γij)|, ∀i = lori + 1, . . . , N , (88)

where lori refers to the index of the last (ranked) origin sector and the ranks of origin sectors
are included in Γori

j .
Another modification is the no-lower-bound R1 (No-LB R1 ), which is less restrictive than

the original. This restriction does not impose a lower bound. In other words, it allows to have
responses that exceed responses of categories in the first cluster in absolute terms. For a positive
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response, it is defined as:

min
{
r(X)
a (Γ1j)

}
> r(X)

a (γij), ∀i = l1 + 1, . . . , N , (89)

and for a negative response as:

max
{
r(X)
a (Γ1j)

}
< −r(X)

a (γij), ∀i = l1 + 1, . . . , N . (90)

Figure 9 illustrates the different restrictions for sectoral demand shocks. Panel 9a presents
the origin R1 for sectoral consumption, combined with a no-lower-bound R1 for prices. Panel 9b
presents a case where consumption responses follow a standard R1 restriction. For some demand
shocks, there are quite a few origin sectors. It may therefore be helpful to restrict responses of
origin shocks to the most important ones. The consequence is that the R1 corridor is set wider
because it is not defined by the least ranked origin sector. Panel 9c illustrates how an origin
R1 functions without imposing an additional type-R2 restriction. For demand shocks, I only
distinguish between two clusters for consumption variables: origin sectors versus the rest. For
prices I still impose an R2 restriction but in combination with a no-lower-bound R1. Panel 9d
illustrates this case.

There is one final restriction that I impose for supply shocks exclusively: a sign restriction
on aggregate inflation and consumption growth. This entails that in response to a positive
sectoral supply shocks I require that aggregate inflation decreases and aggregate consumption
growth increases. This is motivated by the theoretical analysis. In contrast, I impose no such
sign restriction for sectoral demand shocks as theoretically the response of aggregate variables
is more dependent on the individual sectoral demand shock. The analysis above illustrates that
on the sectoral level not all price and quantity responses follow the same sign. It is crucial
however that a classical sign-restriction of supply and demand shocks holds on the sectoral level
for origin and/or first cluster variables: for these specific sectors, prices and consumption move
in opposite direction for supply shocks and in the same direction for demand shocks.

Since for some sectors it is much harder to identify shocks than for others, I apply the most
restrictive mix of R1 - and R2 -type restrictions possible, but revert to a less restrictive mix if
necessary. Table 2 summarizes for all feasible shocks the final restrictions I use to identify the
shock.

Finally, note that I do not explicitly identify aggregate supply or demand shocks.

5.3 Time series data and FAVAR parameterization

I use monthly time series on PCE real quantity and price indexes for 72 PCE categories and
aggregates from the BEA from 1959 until June 2022.24 Many of these PCE series are affected
by outliers. I therefore check for all individual PCE series whether observations exceed the
interquartile range by a factor 5. A value that exceeds this threshold is then adjusted to the
positive or negative value of that very threshold. Appendix Figures A.1 and A.2 show some
sectors with substantial outlier adjustments.

24See Appendix E.5 for additional information.
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Table 2: Feasible and successful models

Most restrictive w/ success Most restrictive w/ success

Shocks R1 R2 Shocks R1 R2

Sectoral supply shocks: X̂pce
r Sectoral supply shocks: X̂pce

r (continued)

1 R1 cz; SR pz R2 cz (7, 8) — —
2 — — (2, 17) — —
3 R1 cz; SR pz R2 cz (20, 21)∗ na na
4 — — (20–22) R1 cz; R1 pz R2 cz; R2 pz

5 — — (24, 25) — —
6 — — (26, 27) — —
7 — — (28, 29) — —
8 — — (30, 31) R1 cz; SR pz R2 cz

9 R1 cz; R1 pz R2 cz; R2 pz

10 R1 cz; R1 pz R2 pz Sectoral demand shocks: F̂pce
r

11 R1 cz; R1 pz R2 cz; R2 pz

12 R1 cz; R1 pz R2 pz (1–3) Origin R1 cz; No-LB R1 pz R2 pz

13 R1 cz; SR pz R2 cz (4–7) Origin R1 cz; No-LB R1 pz R2 pz

14 R1 cz; SR pz R2 cz (8–12) Origin R1 cz; No-LB R1 pz R2 pz

15 R1 cz; R1 pz R2 cz; R2 pz (13–17) Origin R1 cz; No-LB R1 pz R2 pz

16 — — (18–20) Origin R1 cz; No-LB R1 pz R2 pz

17 — — (21–24) Origin R1 cz; No-LB R1 pz R2 pz

18 — — (25, 26) Origin R1 cz; No-LB R1 pz R2 pz

19 R1 cz; R1 pz R2 cz; R2 pz (27–32) R1 cz; No-LB R1 pz R2 pz

20 — — (33–39) na na
21∗ na na (40–44) — —
22 — — (45–49) — —
23 R1 cz; SR pz R2 cz (50–53) na na
24 R1 cz; SR pz R2 cz (54–56) na na
25 — — (57–62) na na
26 — — (63–72) na na
27 — —
28 R1 cz; SR pz R2 cz

29 — —
30 R1 cz; SR pz R2 cz

31 R1 cz; SR pz R2 cz

32 R1 cz; SR pz R2 cz

33 — —

Notes: This table summarizes for all feasible shocks the final mix of R1 and R2 restrictions that I use to
identify the shocks. SR refers to a sign restriction. If a column does not include a cz or pz it implies that this
variable type remains unrestricted.

In the FAVAR I use first differences of log PCE price indices and log real log quantity
indices. Similarly to De Graeve and Schneider (2023), I impose a total number of factors that
is larger than for typical FAVAR models used in the literature. My interest is to identify as
many sectoral shocks as possible. Including a small number of factors may not be sufficient to
capture the volatility created by all relevant sectoral shocks. My benchmark is to explain at
least 50 percent of sectoral consumption growth and inflation rates. To achieve that I require
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26 unobserved factors, K. Additionally recall that the number of observed factors, M , depends
on the composition of the first cluster for the respective shocks. Given this number of factors,
I determine the number of VAR lags by Akaike and Schwartz criteria, which both suggest that
one lag is sufficient.

6 Results

This section presents the empirical contributions of sectoral supply and demand shocks to
personal consumption expenditure (PCE) inflation and consumption growth. I identify sectoral
shocks via the scheme motivated and illustrated in earlier sections.

My main objects of interest are the sectoral origins of PCE inflation. Figure 10 illustrates the
aggregated median contributions of sectoral shocks to inflation: I contrast actual observed year-
on-year (y-o-y) PCE inflation (red line) with PCE inflation conditional on only sectoral supply
and demand shocks (black line). The differences between the red and black line comprises all
other drivers of inflation that I do not explicitly identify.25 The colored bars provide a further
breakdown into median supply and demand contributions to PCE inflation. Note that the
black line is the median of the sum of all feasible and successfully identified supply and demand
contributions.26

At a bird’s eye view, sectoral shocks explain a portion of PCE inflation’s business cycle
but leave ample room for other, non-identified, shocks. In other words, the aggregated con-
tributions of sectoral shocks to inflation hover around its baseline in most periods, sometimes
having increasing and in other times decreasing contributions to inflation. With regards to
a supply-and-demand breakdown, supply shocks are of much larger macroeconomic relevance
than sectoral demand shocks. Recall that the types of sectoral demand shocks I identify are
shocks to changes in consumer demand composition. Hence, this result does by no means rule
out that aggregate demand shocks, e.g. fiscal policy shocks, have large contributions to PCE
inflation.

A key result of this paper are the two notable time periods where sectoral origins exerted
substantial (more than usual) inflationary pressure. During the Great Inflation and in recent
years, I find that a major part of PCE inflation originates from sectoral supply sources. However,
the importance of sectoral shocks varied throughout both periods. Panels 10b and 10c provide
an enlarged picture for these two periods.

6.1 Inflation in recent years

In the wake of lifted COVID-19 lockdowns the U.S. economy experienced rapid increases of
inflation from the first half of 2021 onward, until the end of my sample in June 2022. Comparing
these (unconditional) rapid price increases with my inflation series conditional on sectoral origins

25These drivers could be aggregate shocks, which, in principle, I am able identify but, as illustrated in earlier
sections, it is not the focus of this paper.

26These contributions are in addition to the sample mean of inflation, which captures other exogenous compo-
nents of inflation. In this paper, I am interested in business cycle fluctuations; exogenous to my model are for
instance long-term drivers of inflation.
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in Panels 10c reveals three distinct sub-periods with changing degrees of sectoral sources that
explain inflation.

In a first sub-period from March 2020 until February 2021, I find that sectoral demand
shocks have had fairly stable negative contributions to inflation. This is no surprise considering
the effect the COVID-19 pandemic had on depressing demand in 2020. On the contrary, total
sectoral supply contributions have risen steadily until February 2021, increasing their positive
effects on aggregate prices. While PCE inflation has been increasing in that period, y-o-y
inflation rates essentially recovered to pre-COVID-19 levels and remained consistently below
the two-percent objective. I present a more detailed picture on individual sectoral contributions
below but one important factor at the time were supply shocks originating in the Computer and
electronic products sector. Overall, my conditional inflation series increased to levels well above
observed PCE inflation and well above the two-percent objective. The residual between the two
series could be explained by large aggregate negative demand shocks with negative effects on
inflation.

In a second sub-sample that I date from March 2021 until September 2021, I observe an
inversion of sectoral contributions. Sectoral demand shocks started to reduce their negative im-
pact on inflation, whereas positive sectoral supply contributions decreased considerably between
February and April. At the same time, actual PCE inflation increased sharply. With overall
slightly decreasing sectoral contributions in this sub-period, other factors have to explain the
rise in inflation. While my model cannot speak to those factors directly, a likely candidate are
additional aggregate demand-pull factors such as COVID-19 relief spending. In the wake of the
pandemic, the U.S. government issued three stimulus checks to boost demand: the first check
in April 2020, a second in December 2020/January 2021, and a third in March 2021.

Finally, the third sub-period commences in October 2021, with yet again changing sectoral
contributions. Sectoral demand shocks developed small demand-pull contributions. More im-
portantly though, sectoral supply shocks increased their inflationary contributions sharply. The
nature of these supply shock contributions do not stem from one sectoral source alone but are
distributed across numerous sectors with varying degrees of importance. Some of these sec-
tors are, for instance, supply shocks originating in the Transportation equipment, Furniture and
related products, as well as Computer and electronic products sectors.

It is in this last sub-period where negative sectoral supply shocks become the major driver of
inflation. Going back in time, Panel 10a illustrates that such strong inflationary contributions
have not occurred since the Great Inflation concluded in the mid-1980s. There is one exception:
during the Great Recession negative sectoral supply shocks raised prices substantially. But
they did so in anticipation of a dramatic collapse of the overall price level midway through
the recession. Apart from this exception, my results show that overall sectoral shocks had no
substantial inflationary effects for around four decades with in fact mostly negative contributions
to inflation during that time. When considering the path inflation has taken from the mid-2010s,
the inflationary pressure exerted by sectoral supply shocks in recent years appears all the more
striking: from 2015 until the end of my sample, my inflation series conditional on only sectoral
sources changed from around -1 percent to over 8.5 percent.
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Figure 10: PCE inflation and its sectoral origins (y-o-y)
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Notes: The figure illustrates the aggregated median contributions of sectoral shocks to inflation: I
contrast actual observed year-on-year (y-o-y) PCE inflation with PCE inflation conditional on only
sectoral supply and demand shocks (black line).

6.2 Evaluating the Fed’s policy stance

After a long spell of below-two-percent annual inflation, the recent price hikes across-the-board
have brought the discussion on what drives inflation to the wider policy discussion: “[i]nflation
has risen, largely reflecting transitory factors.” This was the Federal Open Market Committee’s
(FOMC) assessment in April 2021a (p. 1). Back then, the nature of heightened inflation was
a highly contested topic: Are high inflation levels a short-lived phenomenon or are we entering
a prolonged period of heightened inflation? The FOMC’s April assessment on the short-lived
nature of inflation was upheld during its June 2021b and July 2021c meetings. The wording
changed slightly to “Inflation is [elevated], largely reflecting transitory factors.” (both p. 1)
and was weakened in the following November 2021d meeting to “Inflation is elevated, largely
reflecting factors [that are expected to be transitory].” (p. 1). In the next FOMC statement in
December 2021c there was no mentioning of “transitory” factors anymore.
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Figure 11: PCE inflation and the intensity of sectoral contributions
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Notes: Sectoral origins of inflation are displayed as simple median contributions around zero, i.e.
without adding the mean of inflation, in contrast to previously depicted series that were conditional
on sectoral shocks. Dashed lines correspond to a 300-basis-point “relevance” corridor around zero.

In the remainder of this sub-section, I assess the Fed’s judgment on these transitory or short-
lived factors through the lens of sectoral supply and demand disturbances. In the previous sub-
section I argue that, recently, sectoral factors have had exceptionally large contributions to PCE
inflation. However, these were of no particular concern up until fall 2021. Figure 11 shows a
small transformation of the sectoral contributions presented earlier. Sectoral origins of inflation
are now displayed as simple contributions around zero, i.e. without adding the mean of inflation,
in contrast to previously depicted series that were conditional on sectoral shocks. Additionally,
a 300-basis-point “relevance” corridor around zero is plotted.27 Sectoral contributions have only
breached the upper bound of this corridor during the Great Inflation, briefly during the Great
Recession, and from end-2021 onward. However, prolonged contributions above this corridor
have only occurred during the Great Inflation and recently. In other words, sectoral shocks
have had no substantial inflationary effect for about four decades and were therefore of no large

27The width of this corridor is arbitrary but it’s exact dimension is not important and only matters for
illustration purposes.

39



concern to monetary policy. On the contrary even, sectoral contributions breached the lower
bound on a few occasions in that time, suggesting negative contributions to inflation.

Panel 11b enlarges the figure for recent years and allows to better gauge the exact point
in time when sectoral shocks began to show exceptionally large contributions. The Panel fur-
ther marks three key months with regards to changes in the Fed’s policy. As noted above, in
November 2021 the FOMC started to weaken its language on inflation being transitory, and at
the following meeting in December it removed the term transitory altogether. Furthermore, in
November 2021d the FOMC announced for the first time since the outburst of the COVID-19
pandemic in 2020 that it would “[. . . ] begin reducing the monthly pace of its net asset pur-
chases [. . . ]” (p. 2). This suggests that between the September 2021e and November 2021d
meetings, the FOMC started to revise it assessment on inflation being driven by transitory
factors. Between those meetings sectoral contributions increased sharply, breaching the rele-
vance corridor for the first time and increasing up until the end of the sample. In March 2022,
the FOMC concluded its quantitative easing program and announced an increase of the target
range for the federal funds rate from 0 to 0.25 up to 0.25 to 0.5, for the first time since the
COVID-19 pandemic started. My results overall suggest that considering sectoral supply shocks
as short-lived phenomena has been a reasonable assumption up until the second half of 2021.
The FOMC’s shift in policy matches the timing when sectoral supply shocks started becoming
macroeconomically relevant.

Panel 11c also shows the month-on-month (m-o-m) contributions. While m-o-m inflation
rates are generally more volatile, and therefore breaching the relevance bound more frequently,
the timing still matches. Until September 2021 sectoral contributions have not reached levels
above the relevance bound. Only starting from October onward have sectoral contributions
reached and stayed above this bound.

In a speech on 21 March 2022, Jerome Powell, chair of the Fed, acknowledges the supply-side
contributions as a driver of inflation up to this point (p. 4):

Why have forecasts been so far off? In my view, an important part of the explanation
is that forecasters widely underestimated the severity and persistence of supply-side
frictions, which, when combined with strong demand, especially for durable goods,
produced surprisingly high inflation.

My results show that these supply-side origins are sectoral, i.e. combinations of sector-specific
supply shocks with macroeconomic relevance. In general, supply shocks are difficult to act
upon by monetary policy because hiking interest rates further depresses already reduced output
growth and likely increases unemployment. The Fed’s approach to have gradually tightened
monetary policy between November 2021 and March 2022 is therefore compatible with my
results.

Further on, in the same speech from 21 March ibid., Jerome Powell states for the time ahead
that (p. 5):

It continues to seem likely that hoped-for supply-side healing will come over time as
the world ultimately settles into some new normal, but the timing and scope of that
relief are highly uncertain. In the meantime, as we set policy, we will be looking to
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Figure 12: PCE inflation and its sectoral supply origins (y-o-y, demeaned)
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Notes: The figure shows median contributions of sectoral supply shocks to demeaned inflation.
Additionally, 95-percent and standard-deviation confidence bands are plotted.

actual progress on these issues and not assuming significant near-term supply-side
relief.

Given the high contributions of sectoral disturbances I find throughout 2022, it remains un-
certain whether inflationary sectoral supply and demand factors will decay quickly in the near
future.

Finally, Figure 12 shows additional 95-percent and standard-deviation confidence bands for
sectoral supply shocks. At standard deviation bands and for recent years, sectoral supply shocks’
contributions became significant from March 2022 onward, confirming the timing considerations
illustrated above.28

28The appendix includes a similar figure for demand shocks, whose contributions to PCE inflation are not
significant.
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6.3 Decomposing aggregated sectoral shock contributions

The aggregate contributions of sectoral supply and demand shocks presented so far already
provide a good overview on the overall sectoral sources of heightened inflation at certain points
in time. I now provide decompositions of these contributions into smaller subsets as well as
highlight individual contributions originating from certain sectors.

Figure 13 decomposes the sectoral supply-side drivers of Figure 10 into contributions from
services and non-services sectors.29 Panel 10c shows that in recent years, services sectors were
mostly subject to positive supply shocks and thereby had negative contributions to inflation.
One explanation could be that certain services sectors have benefited predominantly from lifting
policies imposed during 2020 to reign in the COVID-19 pandemic. Removing social distancing
measures and return to workplace measures could have had a stronger impact in services sectors,
whereas supply-chain disruptions are a phenomenon occurring in goods-producing industries.
Given the pattern of services sector contributions, supply shocks in goods-producing (and other
non-services) sectors had even larger inflationary contributions to aggregate inflation than Fig-
ure 10 suggests. Panel 13b reveals that no such difference between services and goods-producing
supply disturbances occurred during the Great Inflation. Both types of sectors were subject to
negative supply shocks.

Figures 10 and 13 show conditional and unconditional year-on-year inflation. Alternatively,
Figure 14 presents contributions for monthly (annualized) inflation, which provides a better
way to date certain contributions than using y-o-y inflation. When the first lockdowns were
imposed in March 2020, I find that both services and non-services sectors were subject to
negative supply shocks. The shocks I identify are specific to the respective origin sector, and
then lead to aggregate consequences directly and through spillovers to other sectors. One
plausible hypothesis is that many supply and demand shocks related to the pandemic in 2020
were in fact aggregate or other combined shocks. Lockdowns, stay-at-home orders, etc. are
economy-wide policies. The sector-specific contributions I identify in March 2020 and later
months likely capture supply (and demand) factors from these policies that were specific to the
respective origin sectors. For instance, as noted above, some services sectors are more affected
by these policies.

Figure 15 presents a detailed breakdown of some (important) individual sector contributions
to PCE inflation from mid-2019 until mid-2022.30 The upper left hand corner shows how supply
shocks originating in the Transportation equipment sector corroborate my previous analysis on
the Fed’s policy change. While these types of shocks did exert inflationary pressure during
2020, their overall contributions fluctuated up until mid-2021. From July to October 2021
Transportation equipment’s supply shocks rapidly gained in importance and are therefore some
of the contributing factors that led to an increase of overall supply-shock induced inflation.
Moving to the upper right-hand panel supply-shock contributions from Furniture & related
products show an even stronger contribution that increased even further towards the end of

29Note that no such decomposition is necessary for sectoral demand contributions. While there are several
potential sectoral demand shocks for services categories, I cannot uncover any such demand shocks. The lack of
identifiable services-sector shocks may be an interesting result by itself. It may be less common for consumers to
change preferences for individual services in contrast to shifting preferences between goods categories.

30See also the Appendix I for more figures on individual contributions as well as the actual sector-shock series.
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Figure 13: PCE inflation and its sectoral origins (y-o-y): goods vs. services
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Notes: See notes to Figure 10.

2021 and early 2022. Interestingly, the closest-matching demand shock contributions for these
two supply shocks, also had inflationary effects, albeit smaller compared to their supply-shock
counterparts.

The two middle panels of Figure 15 present additional, compatible sector examples. First,
Computer & electronic products shocks were a source of inflationary supply shocks throughout
2020. Many commentators discussed the semi-conductor shortage recorded shortly after the
first COVID-19 lockdowns. These supply shocks however reduced in importance substantially
in the first half of 2021, supporting analysis on short-lived cost-push factors at the time. How-
ever, my results also show that a resurgence of Computer & electronic products shocks occurred,
again around September 2021, counteracting views on the short-livedness of inflationary pres-
sure originating in the sector. Second, supply shocks originating in Plastics & rubber products
provide yet another type of pattern: shocks from this sector had no meaningful contributions up
until end-2021, when negative supply shocks started to contribute substantially to heightened
inflation.
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Figure 14: PCE inflation and its sectoral origins (m-o-m, annualized)
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Notes: The figure presents contributions for annualized monthly (m-o-m) inflation, which provides a
better way to date certain contributions than using year-on-year inflation.

I conclude this sector-by-sector breakdown by presenting two counter examples showing
that not every identified shock is also contributing in the same fashion. First, in the lower-left-
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Figure 15: Individual shock contributions to PCE inflation in recent years (m-o-m, annualized)
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Notes: This figure shows median contributions of individual sector shocks to demeaned and
annualized monthly PCE inflation (m-o-m).

hand panel, contributions from shocks in the textile and related industries had no noteworthy
inflationary contributions in recent years. Second, the final panel shows two sectors (Arts, en-
tertainment & recreation and Accommodation & food services) that mainly experienced positive
supply shocks in recent years and thereby alleviated the overall inflationary contributions from
sectoral supply shocks. Both sectors are part of customer-facing services industries which par-
ticularly benefited from the reopening of the economy. It is noteworthy that my identification
picks up shocks that originate in their respective sector. While imposing and lifting lockdowns
has an effect on large parts of the economy, the identified shocks may pick up factors from these
policies that are idiosyncratic to each of the two sectors.
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Figure 16: PCE inflation and “oil”-sector shocks
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Notes: The first row of this figure shows median contributions to demeaned and annualized monthly
PCE inflation of joint supply shocks to Mining and Petroleum and coal products (“oil”-sector). The
second row shows total sectoral median contributions to year-on-year inflation, including the
“oil”-sector shock.

6.4 Sectoral sources during the Great Inflation

The origins of recently increasing inflation show close resemblance to those during the Great
Inflation. One well-known cost-push factor during the Great Inflation was the oil price. Did this
increase in oil prices stem entirely from shocks in oil producing industries or from other sectors?
The oil embargo imposed by the OAPEC31 in October 1973 could certainly be classified as a
sectoral supply shock. However, other cost-push factors contributed to the increase in prices.
My results show that similarly to the (post-)COVID-19 period a substantial source of inflation
are sectoral supply shocks. There are some striking differences, though.

While contributions of sectoral supply shocks are large in both periods, the Great Inflation
shows larger inflationary sectoral demand contributions. Inflationary contributions from supply
shocks are unequivocally stemming from negative sectoral supply shocks, the aggregate effects
of sectoral demand shocks are however ambiguous and differ between consumer-good categories.

31Organization of Arab Petroleum Exporting Countries
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As illustrated in Section 4, aggregate contributions of demand shocks are more dependent on
the exact network structure. Sectoral demand shocks change the composition between PCE
categories. An exogenous increase in demand for one PCE category also entails a shift away
from other PCE categories. In some cases this opposite effect on remaining categories can lead
to even larger opposite price effects and overpower price changes occurring within the origin
category.

As noted in Table 1, my main aggregate sectoral contributions to inflation do not include
sector-specific supply shocks originating in oil producing industries. My identification scheme
does allow to identify supply shocks from oil producing industries but with some caveats. Intu-
itively, the reason is that energy prices, due to their volatility, are often among the most affected
price categories in many of the sectoral rankings. It is therefore difficult to separate oil-sector
supply shocks using my identification from other sectoral shocks that have affects on oil/energy
prices. I can identify oil shocks but stay cautious in their interpretation. Second, due to the
similarity in rankings the “oil”-shock I identify is in fact a combination of Mining and Petroleum
and coal products supply shocks. It turns out the clusters for both sectoral shocks are identical
which does not permit to separate shocks from these two industries. With these caveats in
mind, Figure 16 shows the contribution of this shock for the Great Inflation and recent years,
both separately and aggregated with all other sectoral shocks. Total sectoral contributions are
even larger during the first peak in 1974 and also the second peak in 1981.

Sectoral shocks, even without oil supply shocks, explain the bulk of inflation increases com-
pared to the baseline during the first peak of the Great inflation around 1974. While still having
large inflationary contributions, sectoral shocks explain substantially less during the second peak
around 1980. Within my model setup I cannot directly speak to other factors that explain this
residual around this second inflation peak. However, my results are compatible with other ex-
planations on the sources of inflation around that time. This includes, for instance, Hazell et al.
(2022) who compile novel U.S. state-level price indices for nontradeable goods between 1978
and 2018 and estimate the slope of the Phillips curve. The authors associate a large share of
consumer price inflation increases between 1979 and 1981 to an increase in long-run inflation
expectations but also attribute a share to supply shocks. My results leave room for increases of
expectations in the build up to the 1980 peak but less so around the first peak around 1974.

6.5 Sectoral supply and demand shocks and consumption growth

While the focus of this paper is on PCE inflation, my model also delivers contributions of
sectoral supply and demand shocks on PCE consumption growth. These are summarized in
Figure 17.

Panel 17a shows unconditional and sector-shock-conditional, y-o-y consumption growth.
Comparing these contributions with those for PCE inflation, my results suggest that busi-
ness cycle fluctuations of consumption are somewhat better explained by sector-specific shocks
throughout my sample. These results are in line with De Graeve and Schneider (2023). In there
we investigate the sectoral contributions to industrial production (IP) from the early 1970s
until the onset of the COVID-19 pandemic and find that sector-specific shocks, in contrast to
aggregate shocks, are the major driver of IP fluctuations.
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Figure 17: Consumption growth and its sectoral origins
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Notes: The figure presents median sectoral contributions to aggregate consumption growth.

Considering the demand and supply breakdown in Panel 17b it is striking that sectoral
demand shocks show a much stronger contribution to consumption growth than inflation. Ap-
pendix Tables A.8 and A.9 show variance decompositions for all identified sectoral shocks for
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both inflation and consumption growth. While, overall, the sum of median variance decomposi-
tions for supply shocks is fairly similar for both variables. Sectoral demand shocks explain more
of aggregate consumption growth, making sectoral shocks overall more important for explaining
aggregate activity than inflation.

7 Conclusion

This paper provides new estimates on the sectoral origins of PCE inflation. I derive contributions
of sector-specific supply and demand shocks to inflation through an identification scheme that
harnesses cross-sectional information complementary to sectoral PCE inflation and consumption
growth data. At the same time, my identification restrictions are consistent with a wide array
of canonical DSGE models and calibrations.

My estimates deliver novel empirical evidence on the importance of sector-specific shocks
for explaining high inflation in recent years. I find that sectoral supply shocks were a major
source of inflation since the reopening of the U.S. economy in the wake of lifting COVID-19
restrictions. In contrast, sectoral shocks exerted no relevant inflationary pressure within the four
decades prior to the COVID-19 pandemic. I then relate the trajectory of sectoral contributions
since early-2020 to the policy discussion on whether elevated inflation is only short-lived or a
prolonged phenomenon. I find that sector-specific supply shocks became the major inflation
driver within the second half of 2021, corroborating an assessment of heightened inflation as a
lasting phenomenon from that point forward. The flipside of this is that up until the second
half of 2021, it was a reasonable assumption to consider sectoral supply shocks as short-lived.
The Fed’s gradual tightening commencing end-2021 accords well with the simultaneous rapid
increase in inflationary contributions from negative sectoral supply shocks. Looking ahead, it
remains uncertain whether sectoral cost-push and demand-pull factors will decay quickly in
the near future, given the high contributions of sectoral disturbances I find throughout the
first half of 2022.
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A Alternative DSGE specifications

A.1 Calvo pricing

For my identification setup I use a simpler information friction that allows for a better derivation
of sectoral multipliers. Here I describe the alternative Calvo pricing problem. Firm r ∈ j solves
the following standard problem:

max
Pjt(r)

Et

∞∑
s=0

Qt,t+sα
s
j [Pjt(r)Yjt+s(r)−MCjt+s(r)Yjt+s(r)] , (A.1)

subject to the market clearing condition, production function, demand schedules and staggered
price setting:

Yjt(r) =

J∑
j′=1

∫
=j′

Mj′jt(r
′, r)dr′ +

Z∑
z=1

∫
=z

Mzjt(q, r)dq , (A.2)

Yjt(r) = eajtL1−δ
jt (r)M δ

jt(r) , (A.3)

Yjt(r) =

(
Pjt(f)

Pjt

)−θ (∫ 1

0
Yjt(r

′)dr′
)
, (A.4)

Pjt =
[
(1− αj)P

∗1−θ
jt + αjP

1−θ
jt−1

] 1
1−θ

. (A.5)

A Calvo pricing problem for final goods producers follows, analogously.
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B Steady state

I provide a selective summary of the models symmetric steady state. Across firms the steady
state implies:

Wj =W , (A.6)

Yj(f) = Y , (A.7)

Lj(f) = L , (A.8)

Mj(f) =M im , (A.9)

Mz(q) =Mpce . (A.10)

The symmetry yields that all prices are equal: P pce
t = Pzt = Pm

zt = Pjt = Pm
jt = P Consumption

is equal to:

Cz = ωczC , (A.11)

Cz(f) = ωczC . (A.12)

Steady state gross output and intermediate-goods sector shares are given by:

Yj(f) =

J∑
j′=1

∫
=j′

Mj′j(f
′, f)df ′ +

Z∑
z=1

∫
=z

Mzj(q, f)dq , (A.13)

Yj =

J∑
j′=1

Mj′j +

Z∑
z=1

Mzj , (A.14)

Y =M im +Mpce . (A.15)

Steady state gross output shares, nj , are given by:

nj = ψ

J∑
j′=1

nj′ωj′j + (1− ψ)

Z∑
z=1

ωczkzj , (A.16)

N = (1− ψ)
[
I− ψΩ′]−1

K′Ωc , (A.17)

where ψ = M im

Y . Note that
∑Z

z=1 ωczkzj = ωcj (or K′Ωc = Ωim
c ), which leads to

nj = ψ

J∑
j′=1

nj′ωj′j + (1− ψ)ωcj , (A.18)

N = (1− ψ)
[
I− ψΩ′]−1

Ωim
c . (A.19)

where N ≡ [n1, . . . , nJ ]
′. The share of intermediate use in gross output solves ψ = δ θ−1

θ .
The remaining steady state solutions are not directly relevant for my model solutions and are
therefore not included.
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C Log-linearized deviations from steady state

This section summarizes the log-linearized first-order conditions around a steady state.32

C.1 Aggregation

Consumption and production of final goods is given by:

ct =
Z∑

z=1

ωcz (czt + fzt) = mpce
t , (A.20)

czt + fzt = mzt , (A.21)

mpce
t =

Z∑
z=1

ωczmzt , (A.22)

mzt =
1

ωcz

∫
=̃z

mzt(q)dq . (A.23)

Intermediate production is equal to:

mim
t =

J∑
j=1

njmjt , (A.24)

mjt =
1

nj

∫
=j

mjt(f)df , (A.25)

mjt(f) =

J∑
j′=1

ωjj′mjj′t(f) , (A.26)

mjj′t(f) =
1

nj′

∫
=j′

mjj′t(f, f
′)df ′ . (A.27)

Final-good prices are:

ppcet =
Z∑

z=1

ωczpzt = Ω′
cp

pce
t , (A.28)

pmzt =
J∑

j=1

kzjpjt , (A.29)

pm,pce
t = Kpim

t , (A.30)

where ppce
t is a column vector with elements pzt and similarly pm,pce

t with elements pmzt. Intermediate-
good prices are given by:

pmjt =
J∑

j′=1

ωjj′pj′t , (A.31)

pm,im
t = Ωpim

t , (A.32)
32As noted in the main text, this appendix assumes full Calvo pricing for both intermediate and final goods

producers.
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pjt =

∫
=j

pjt(f)dj . (A.33)

where pim
t is a column vector with elements pjt and and similarly pm,im

t with elements pmjt .
Aggregate and sectoral labor is given by:

lt =
J∑

j=1

ljt , (A.34)

ljt =
1

nj

∫
=j

ljt(f)df . (A.35)

C.2 Demand

Demand for consumption goods is equal to

czt − ct = η(ppcet − pzt) , (A.36)

czt(q)− czt = θ(pzt − pzt(q)) . (A.37)

Demand for intermediate goods by final goods producers is given by:

mzjt −mzt = η(pmzt − pjt) , (A.38)

mzjt(q)−mzt(q) = η(pmzt − pjt) . (A.39)

Demand for intermediate goods by intermediate goods producers is instead given by:

mjj′t −mjt = η(pmjt − pj′t) , (A.40)

mjj′t(f)−mjt(f) = η(pmjt − pj′t) , (A.41)

mjj′t(f, f
′)−mjj′t(f) = θ(pj′t − pj′t(f

′)) . (A.42)

Market clearing conditions at sectoral and aggregate level are expressed as:

njyjt = ψ

J∑
j′=1

ωj′jnj′mj′jt + (1− ψ)

Z∑
z=1

kzjωczmzjt , (A.43)

yt = ψmim
t + (1− ψ)mpce

t = ψmim
t + (1− ψ)ct . (A.44)

C.3 Euler equation and labor supply

The Euler equation is expressed as:

ct = Et [ct+1]− σ−1
{
it −

(
Et

[
ppcet+1

]
− ppcet

)}
, (A.45)

and labor supply is given by:

wjt − ppcet = ϕljt + σct . (A.46)
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C.4 Firms

Intermediate goods firms have the following log-linearized production function

yjt(f) = ajt + (1− δ)ljt(f) + δmjt(f) , (A.47)

Aggregating this to the sectoral level yields:

yjt = ajt + (1− δ)ljt + δmjt . (A.48)

Final goods firms and sectors have the simple production functions, respectively:

yzt(q) = mzt(q) , (A.49)

yzt(q) = mzt . (A.50)

The efficiency condition at firm and sectoral level are given by:

wjt − pmjt = mjt(f)− ljt(f) , (A.51)

wjt − pmjt = mjt − ljt . (A.52)

Marginal costs for final- and intermediate-goods sectors are, respectively:

mczt = pmzt , (A.53)

mcjt = (1− δ)wjt + δpmjt − ajt . (A.54)

Under Calvo pricing both types of producers would set their respective optimal price as:

p∗zt = (1− αzβ)mczt + αzβEt

[
p∗zt+1

]
, (A.55)

p∗jt = (1− αjβ)mcjt + αzβEt

[
p∗jt+1

]
, (A.56)

where sectoral prices would be given by:

pzt = (1− αz)p
∗
zt + αzpzt−1 , (A.57)

pjt = (1− αj)p
∗
jt + αjpjt−1 . (A.58)

C.5 Monetary policy

While I solve the model using a non-essential, simplifying assumption on a monetary policy
rule, the DSGE model can also be solved by a standard Taylor rule. Pasten, Schoenle, and
Weber (2021) for instance specify:

it = φπ
(
ppcet − ppcet−1

)
+ φcct . (A.59)
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D Derivations for analytical model solution

In this Appendix I derive solutions to the three model multipliers used in the main text that are
key in generating my sector rankings. The solutions are similar to Pasten, Schoenle, and Weber
(2021) but include my two extensions, i.e. distinguishing between intermediate- and final- good
producers, and the inclusion of sectoral demand shocks.

D.1 Sectoral supply shocks: all simplifying assumptions applied

I first show a detailed derivation of equation (34). Applying all simplifying assumptions (i) to
(iii) of the main text, prices and marginal costs are weighted by the sectors respective level
of prices stickiness. I set sectoral demand shocks to zero, i.e. fzt = 0 for z = 1, . . . , Z). For
intermediate goods producers prices are given by:

pjt = (1− λj)mcjt , (A.60)

= (1− λj)δp
m
jt − (1− λj)ajt , (A.61)

which in matrix form can be written as:

pim
t = −

[
I− δ(I−Λim)Ω

]−1
(I−Λim)at . (A.62)

Equation (34) is then defined as:

X̂im ≡
[
I− δ(I−Λim)Ω

]−1
(I−Λim) , (A.63)

such that:

pim
t = −X̂imat . (A.64)

For final goods producers sectoral prices and multipliers are derived from:

pzt = (1− λz)mczt , (A.65)

= (1− λz)p
m
zt , (A.66)

which implies:

ppce
t = (I−Λpce)Kpim

t , (A.67)

= −(I−Λpce)KX̂imat . (A.68)

Aggregate prices are then
ppcet = −Ω′

c(I−Λpce)KX̂imat . (A.69)

Because of the monetary-policy assumption ct = −ppcet aggregate consumption follows immedi-
ately from aggregate prices but can alternatively be expressed as a weighted average of sectoral
consumption ct:

ct = Ω′
c(I−Λpce)KX̂imat . (A.70)
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Finally, I derive sectoral consumption from the first-order condition on sectoral consumption
demand (using again that ct = −ppcet ):

czt + ppcet = η(ppcet − pzt) .

In matrix form and substituting for prices this gives the following solution for sectoral consump-
tion:

ct =
[
ηI+ (1− η)ιΩ′

c

]
(I−Λpce)KX̂imat . (A.71)

D.2 Sectoral supply shocks: allowing for labor market heterogeneity

In this part, I derive the solutions to key equation (38) of the main text. Allowing a positive
inverse-Frisch elasticity, ϕ > 0, implies that the labor-supply condition is now given by:

wjt = ct − ppcet + ϕljt . (A.72)

In order to solve for sectoral prices as a function of only sectoral productivity shocks and
parameters we need to solve for wages as a function of consumption, prices and technology
shocks first.

D.2.1 Sectoral supply shocks: solution for sectoral wages

I use the first order conditions for Walras’ law, demand relations at sectoral level, as well as the
steady-state solution for gross output shares:

njyjt = ψ

J∑
j′=1

ωj′jnj′mj′jt + (1− ψ)

Z∑
z=1

kzjωczmzjt ,

mj′jt = mj′t − η(pjt − pmj′t) ,

mzjt = mzt − η(pjt − pmzt) ,

czt = ct − η(pzt − ppcet ) ,

nj = ψ
J∑

j′=1

nj′ωj′j + (1− ψ)ωcj .

Recall the following definitions of prices and consumption:

pmjt =
J∑

j′=1

ωjj′pj′t ,

pm,im
t = Ωpim

t ,

pmzt =

J∑
j=1

kzjpjt ,

pm,pce
t = Kpim

t ,
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ppcet =

Z∑
z=1

ωczpzt = Ω′
cp

pce
t ,

czt = mzt + fzt = mzt .

Combining all equations and substituting into Walras’ law implies the following expression (in
matrix form) for sectoral gross output, yt:

yt = ψD−1Ω′Dmim
t + (1− ψ)D−1K′Ωcct

+ η(1− ψ)D−1K′ [ΩcΩ
′
c −Dc

]
ppce
t

+
[
ψηD−1Ω′DΩ− ηI+ η(1− ψ)D−1K′DcK

]
pim
t .

I then use efficiency and labor supply conditions,

wjt − pmjt = mjt − ljt ,

wjt − ppcet = ϕljt + σct ,

to find expression for mjt, which in matrix form is given by:

mim
t =

(
1 +

1

ϕ

)
wt −Ωpim

t − 1

ϕ
ιct −

1

ϕ
ιΩ′

cp
pce
t .

Using production function and labor supply condition,

yjt = ajt + (1− δ)ljt + δmjt ,

wjt − ppcet = ϕljt + σct ,

as well as the expression for mim
t I get an expression for gross output yjt, which in matrix form

is equal to:

yt =

(
1

ϕ
+ δ

)
wt −

1

ϕ
ιct −

1

ϕ
ιΩ′

cp
pce
t − δΩpim

t + at .

The derivations above allow for an expression of sectoral wages, wt, that is only dependent on
sectoral prices, aggregate consumption and supply shocks:

Θ′wt = θcct + θpcep ppce
t + θimp pim

t − ϕat ,

which uses the following composite parameters:

Θ′ ≡ (1 + δϕ) I− ψ (1 + ϕ)D−1Ω′D ,

θc ≡
[
I− ψD−1Ω′D

]
ι+ ϕ(1− ψ)D−1K′Ωc ,

θpcep ≡
[
I− ψD−1Ω′D

]
ιΩ′

c + ϕη(1− ψ)D−1K′ [ΩcΩ
′
c −Dc

]
,

θimp ≡ ϕ
[
ψ(η − 1)D−1Ω′DΩ+ η(1− ψ)D−1K′DcK− ηI+ δΩ

]
.
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D.2.2 Sectoral supply shocks: solving for sectoral prices

Given the solution for sectoral wages we can now solve for sectoral prices: Using the first-order
conditions for marginal costs:

mcjt = (1− δ)wjt + δpmjt − ajt ,

mczt = pmzt ,

and the information friction given by simplifying assumptions (iii),

pjt = (1− λj)mcjt ,

pzt = (1− λz)mczt ,

delivers the following expressions for sectoral producer and consumer prices:

pjt = (1− λj)(1− δ)wjt + (1− λj)δp
m
jt − (1− λj)ajt ,

pzt = (1− λz)p
m
zt ,

or in matrix form:

pim
t = (1− δ)(I−Λim)wt + δ(I−Λim)Ωpim

t − (I−Λim)aj ,

ppce
t = (I−Λpce)Kpim

t .

Then using the expression for wages I get the following expression:

[
I− δ

(
I−Λim

)
Ω− (1− δ)

(
I−Λim

)
Θ′−1(

θimp + θpcep (I−Λpce)K− θcΩ
′
c (I−Λpce)K

) ]
pim
t ,

= −
(
I−Λim

) [
I+ ϕ(1− δ)Θ′−1

]
at + (1− δ)

(
I−Λim

)
Θ′−1 [ct + ppcet ] .

Using assumption on monetary policy in simplifying assumption (ii), i.e. ct = −ppcet , the last
term in the expression above disappears, which yields the final expression for sectoral prices:

pim
t = −X̂imat ,

where X̂im in key equation (38) is given by:

X̂im ≡
[
I− δ

(
I−Λim

)
Ω

− (1− δ)
(
I−Λim

)
Θ′−1(

θimp + θpcep (I−Λpce)K− θcΩ
′
c (I−Λpce)K

) ]−1

(
I−Λim

) [
I+ ϕ(1− δ)Θ′−1

]
.

(A.73)

The solution for sectoral PCE prices and consumption as well as aggregate PCE prices and
consumption are then the same as under the model using all simplifying assumptions.
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D.2.3 Sectoral supply shocks: verification

If I set ϕ = 0, then the composite parameters used for key equation (38) are given by:

Θ′ =
[
I− ψD−1Ω′D

]
,

θc =
[
I− ψD−1Ω′D

]
ι ,

θpcep =
[
I− ψD−1Ω′D

]
ιΩ′

c ,

θimp = 0 ,

and hence
wt = ιct + ιppcet . (A.74)

which implies that X̂im is given by key equation (34).

D.3 Sectoral demand shocks

The derivation of key equation (49) for sectoral demand shocks follows the same procedure as
for sectoral supply shocks with a few modifications. Setting sectoral supply shocks to zero (i.e.
ajt = 0 for = 1, . . . , J), and applying simplifying assumptions (ii) and (iii) of the main text, it
can be shown that sectoral wages solve the following expression:

Θ′wt = θcct + θpcep ppce
t + θimp pim

t + ϕ(1− ψ)D−1KDcft ,

where

Θ′ ≡ (1 + δϕ) I− ψ (1 + ϕ)D−1Ω′D ,

θc ≡
[
I− ψD−1Ω′D

]
ι+ ϕ(1− ψ)D−1K′Ωc ,

θpcep ≡
[
I− ψD−1Ω′D

]
ιΩ′

c + ϕη(1− ψ)D−1K′ [ΩcΩ
′
c −Dc

]
,

θimp ≡ ϕ
[
ψ(η − 1)D−1Ω′DΩ+ η(1− ψ)D−1K′DcK− ηI+ δΩ

]
.

Given this expression and other respective derivations similar to those for sectoral supply shocks,
I derive the final expression for key equation (49):

F̂im ≡ P̂im
(
I−Λim

)
(1− δ)Θ′−1ϕ(1− ψ)D−1KDc , (A.75)

with composite matrix P̂im defined as:

P̂im ≡
[
I− δ

(
I−Λim

)
Ω

− (1− δ)
(
I−Λim

)
Θ′−1(

θimp + θpcep (I−Λpce)K− θcΩ
′
c (I−Λpce)K

) ]−1
.

(A.76)
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E Data sources

E.1 Input-output data

I use BEA’s NAICS input-output tables for the United States for years 1997 to 2020 from the
make-use framework and include 33 intermediate goods sectors. For all years, I calibrate the
input-output weights matrix, Ω, of the main text in the same way as Pasten, Schoenle, and
Weber (2021) (see their Appendix for more details):

For a year τ , the make table, MAKEτ , and the commodity-by-industry use table, USEτ ,
are transformed such that:

SHAREτ =MAKEτ � (I×MAKEτ ) , (A.77)

REV SHAREτ = SHAREτ × USEτ , (A.78)

SUPPSHAREτ = [REV SHAREτ � (I× USEτ )]
′ , (A.79)

where � is the Hadamard division. SHAREτ is the market share matrix, REV SHAREτ

the revenue share matrix, and SUPPSHAREτ the industry-by-industry input-share matrix.
Matrix Ω in the main text is then calibrated for every year τ as SUPPSHAREτ .

E.2 Bridge table

There are 76 PCE categories available for BEA bridge tables. All items can be identified by a line
number. I remove four of those categories. These include NIPA line item 46 (Net expenditures
abroad by U.S. residents), which does not map to an intermediate-goods producer. I also remove
line items 109 (Foreign travel by U.S. residents), 110 (Less: Expenditures in the United States
by nonresidents), and 111 (Final consumption expenditures of nonprofit institutions serving
households (NPISHs)).

E.3 Frequencies of NAICS sector price changes

Estimates for monthly frequencies of producer price changes are taken from Peneva (2011).
These estimates are weighted average monthly frequencies for years 1995 to 1997. The 29
available sectors are classified based on the older Standard Industrial Classification (SIC) which
requires a conversion to the current NAICS definitions that I use in the main text. I convert SIC
to NAICS industries using 1997 gross output conversion weights provided by Yuskavage (2007).
There are two major drawbacks to this conversion: First, Peneva’s (2011) dataset, which in turn
is based on the dataset by Bils and Klenow (2004), does not include estimates for SIC industries
Primary Metals, Mining, and Construction. For the latter two SIC industries I set their NAICS
equivalent equal to the overall average of monthly frequency of price changes in Peneva (2011),
i.e. 26.1 percent. Primary metals are aggregated with Fabricated metal products, for which SIC
estimates are available. The aggregated Primary metals and fabricated metal products industry
is therefore solely based on estimates for the available SIC Fabricated metal products industry.33

33Consequently, I also ignore any shares of SIC Primary metals, Mining, and Construction that are attributed to
NAICS industries other than Primary metals, Mining and Construction. For instance according to the conversion
weights, around 6 percent of SIC Construction should be attributed to NAICS Real Estate but, due to the lack of
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Finally, Peneva’s (2011) estimates are not available for many individual 2-digit services
sectors but only for a services aggregate. This leads to very similar price frequency estimates
for a number of NAICS industries, which correspond to sectors with indices 26, 27, 28, 29, 30,
31, and 32 of the 33 sectors used in the main text.34

E.4 Durations of PCE price categories

I use median price adjustment durations from Nakamura and Steinsson (2008). To transform
these durations to PCE categories several conversions need to be made. Nakamura and Steins-
son’s (ibid.) estimates are available for Entry Line Items (ELI), which I first map to the Bureau
of Labor Statistics’ (BLS) Consumer Expenditure Survey items, i.e. to universal classification
codes (UCC). I then use a second BLS concordance table to map UCC items to the BEA’s PCE
categories. The final durations for PCE categories are weighted averages of the original ELIs.
For PCE sectors where no matching data is available, I set the price duration to the average
duration of available data.

E.5 PCE time series data

I match the 72 PCE categories of the NAICS-PCE bridge matrix with time series data on PCE
prices and real quantity indices. This means that no individual time series for line items 46,
109, 110, 111 are used. Aggregate price and quantity time series still include these items.

SIC Construction estimates, these are ignored. Rest assured the majority share of NAICS Real Estate originates
from available SIC estimates.

34See for instance Table A.1 for corresponding NAICS sector names.
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F Clustering performance

Table A.1 presents clustering performance for sectoral supply shocks across specifications (I) to (V).
The last column indicates the methods that deliver the best clustering results. These methods
include k-means, k-medoids, and hierarchical clustering, as well as a simple decision algorithm
that I specify based on ranking counts. The Match rate indicates the percentage of the 96 cal-
ibrations that match against the best performing cluster. Similar tables for smaller sets using
only specifications (III) to (V) and specifications (IV) and (V) are not presented here. Table A.2
includes clustering performance for demand shocks.

I then evaluate each cluster against a set of criteria to determine whether it is suitable
for identification or not. For supply shocks, Table A.3 presents clusters across as set with
specifications (I) to (V), Table A.4 for a second set with specifications (III) to (V), and Table A.5
a third set with specifications (IV) and (V).

The Shocks column in each table indicates the composition of supply shocks. Bold numbers
signal that the Match rate is larger than 70 percent. Red indices to PCE categories in the cluster
columns indicate problematic sectors that occur in clusters 1 and 2 across several shocks. Finally,
the last column shows whether the corresponding ranking for sectoral consumption growth rates
is the same to the price ranking, X̂pce. If a cluster is not feasible for the given set, either due
to problematic sectors or because the match rate is too low, I consider the next smaller set and
repeat the exercise.

Another criterion that renders a shock infeasible is applied in Table A.6 for sectoral demand
shocks. I consider sector shock (40-44) as infeasible since it includes 6 sectors in the first cluster.
Too many categories in the first cluster has implications on the number of factors used in the
empirical model.

Final clusters for feasible sector-specific supply shocks are determined based on the following
specifications: shocks using clusters based on specifications (I) to (V) are 1, 3, 10, 11, 15, 21,
23, 28, 30, (20, 21), and (20-22); clusters based on specifications (III) to (V) are 9, 14, 19, 24,
32; and clusters based on specifications (IV) and (V) are 12, 13, 31, (30-31). The remaining
supply shocks are infeasible to be identified. Shock (2, 17), which corresponds to a combination
of Mining and Petroleum and coal products supply shocks is infeasible. I consider this shock as
a proxy for an “oil” shock. The shock is infeasible due to the occurrence of problematic sectors
in clusters 1 and 2. In fact no “non-problematic” price series is included in the first two clusters.
I can still identify this “oil” shock but stay cautious in their interpretation, which is why I do
not include it in my main results. Finally, out of the 15 demand shocks 13 shocks are feasible.
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Table A.1: Clustering performance: supply (all specifications)

Shocks Match Best clustering methods

1 Agriculture, forestry, fishing, and hunting 78.1% K-Mea, K-Med, Hier
2 Mining 92.7% K-Mea, Init
3 Utilities 100% K-Mea, K-Med, Init
4 Construction 50% K-Mea
5 Wood products 39.6% Init
6 Nonmetallic mineral products 2.1% K-Mea, K-Med, Hier, Init
7 Primary metals and fabricated metal products 42.7% K-Mea, K-Med, Hier
8 Machinery 38.5% Hier
9 Computer and electronic products 68.8% K-Med, Hier
10 Electrical equipment, appliance, and components 88.5% K-Mea, K-Med, Hier, Init
11 Transportation equipment 100% K-Mea, K-Med, Init
12 Furniture and related products 50% Hier
13 Miscellaneous manufacturing 64.6% K-Mea, K-Med, Hier, Init
14 Food and beverage and tobacco products 100% Init
15 Textiles, apparel, and leather 92.7% Init
16 Paper and printing 28.1% Hier
17 Petroleum and coal products 99% K-Mea, K-Med, Hier, Init
18 Chemical products 18.8% Hier
19 Plastics and rubber products 58.3% K-Mea, K-Med, Hier, Init
20 Wholesale trade 72.9% Hier, Init
21 Retail trade 75% Hier
22 Transportation and warehousing 49% K-Mea
23 Information 71.9% K-Mea, K-Med, Hier, Init
24 Finance and insurance 54.2% Init
25 Real estate and rental and leasing 25% K-Med
26 Professional, scientific, and technical services 25% Hier, Init
27 Management, administrative and waste services 35.4% Init
28 Educational services 100% Init
29 Health care and social assistance 25% K-Med
30 Arts, entertainment, and recreation 75% K-Mea, K-Med, Hier, Init
31 Accommodation and food services 50% Init
32 Other services, except government 66.7% K-Mea, K-Med, Hier, Init
33 Government 50% Init
(7, 8) Metals and machinery 74% K-Med, Init
(2, 17) Mining and petroleum and coal products 57.3% Init
(20, 21) Trade 75% K-Mea, K-Med, Hier, Init
(20–22) Trade, transportation and warehousing 31.3% Init
(24, 25) Finance, insurance, real estate, rental, leasing 50% K-Mea, Hier, Init
(26, 27) Professional and business services 46.9% K-Med
(28, 29) Educ.services, health care, social assistance 100% K-Mea
(30, 31) Arts, entertain., recreation, accom., food serv. 75% K-Mea, K-Med, Hier, Init

Notes: This table shows clustering performance for sectoral supply shocks across specifica-
tions (I) to (V). The last column indicates the methods that deliver the best clustering results.
The methods includek-means (K-mea), k-medoids (K-Med), and hierarchical clustering (Hier), as
well as a simple decision algorithm that I specify based on ranking counts (Init). The Match rate
indicates the percentage of the 96 calibrations that match against the best performing cluster.
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Table A.2: Clustering performance: demand

Shocks Match Best clustering methods

(1–3) Motor vehicles and parts 100% K-Mea, K-Med, Hier, Init
(4–7) Furnishings and durable household equip. 100% K-Mea, Init
(8–12) Recreational goods and vehicles 100% K-Mea, K-Med, Hier, Init
(13–17) Other durable goods 100% K-Mea, K-Med, Hier, Init
(18–20) Food & bever.purch.for off-premises consum. 100% K-Mea, K-Med, Hier
(21–24) Clothing and footwear 100% K-Mea, Hier, Init
(25, 26) Gasoline and other energy goods 100% K-Med, Hier
(27–32) Other nondurable goods 100% Hier
(33–39) Housing and utilities 100% K-Mea, Hier, Init
(40–44) Health care 100% K-Mea, Hier, Init
(45–49) Transportation services 100% K-Mea, K-Med, Hier, Init
(50–53) Recreation services 100% Hier
(54–56) Food services and accommodations 100% K-Mea, K-Med, Hier, Init
(57–62) Financial services and insurance 100% K-Mea, Init
(63–72) Other services 97.9% Init

Notes: See notes for Table A.1.

Table A.3: Clustering evaluation: supply (all specifications)

Shocks Cluster 1 Cluster 2 Match X̂c
r

1 20 18, 28, 31, 55 78.1% =

2 25 26, 38, 39 92.7% =

3 38, 39 37 100% =

4 25, 26, 38, 39 1, 2 50% 6=
5 26 25 39.6% =

6 6 1, 25, 26, 38, 39 2.1% =

7 1 25, 26, 38, 39 42.7% =

8 7 5 38.5% =

9 17 8 68.8% =

10 5 3 88.5% =

11 1 3, 10 100% =

12 4 25, 26, 39 50% =

13 12 9, 13, 14, 28 64.6% =

14 18, 31, 55 19 100% =

15 22 16, 21, 24 92.7% =

16 29 23 28.1% =

17 25 26 99% =

18 27 26 18.8% =

19 3 6 58.3% =

20 25 26 72.9% =

21 2 25, 26 75% =

22 2, 25, 26, 39, 48, 49 38, 47 49% =

23 63 15, 51 71.9% =

24 62 60 54.2% =
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Table A.3 — Continued

Shocks Cluster 1 Cluster 2 Match X̂c
r

25 33, 46 34, 35 25% 6=
26 53 69 25% =

27 39 25 35.4% =

28 66, 68 67 100% =

29 43, 44, 71 40, 41, 42 25% 6=
30 50 52 75% =

31 56 39 50% 6=
32 45 70 66.7% =

33 25 26 50% =

(7, 8) 1 5, 7, 25, 26, 38, 39 46.9% =

(2, 17) 25, 26 38, 39 100% =

(20, 21) 2 25, 26 75% =

(20–22) 2 25, 26 75% =

(24, 25) 39 25 46.9% =

(26, 27) 53 37 18.8% =

(28, 29) 68 40–44, 66, 67, 71 25% =

(30, 31) 56 25, 26, 36, 38, 39, 50, 52, 54 50% =

Notes: This table is used to evaluate the cluster performance of sectoral supply shocks across specifica-
tions indicated in the title. The Shocks column specifies the composition of supply shocks. Bold numbers
signal that the Match rate is larger than 70 percent. Red indices to PCE categories in the cluster columns
signal problematic sectors that occur in clusters 1 and 2 across several shocks. Finally, the last column
shows whether the corresponding ranking for sectoral consumption growth rates is the same to the price
ranking, X̂pce.
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Table A.4: Clustering evaluation: supply (specifications III to V)

Shocks Cluster 1 Cluster 2 Match X̂c
r

1 20 18 100% =

2 25 26, 39 100% =

3 39 38 100% =

4 25, 39 26, 38 72.2% =

5 26 25, 39 66.7% =

6 1, 6, 25, 26, 38, 39 2–5, 7, 10, 18, 31, 37, 45, 48, 49, 69 52.8% =

7 1 25, 39 59.7% =

8 1, 5, 7, 25, 26, 39 2, 3, 8, 10, 38 56.9% =

9 17 8 70.8% =

10 5 3 98.6% =

11 1 3, 10 100% =

12 4 25, 26, 39 66.7% =

13 12 9, 13, 14, 25, 26, 28, 39 66.7% =

14 31 18, 19, 55 100% =

15 22 16, 21, 24 100% =

16 25 39 37.5% =

17 25 26 100% =

18 25, 26, 39 27 52.8% =

19 3 6 76.4% =

20 25 26 97.2% =

21 2 25, 26 100% =

22 2, 25, 26, 39, 47, 48, 49 1, 10, 15, 38, 45, 64, 72 65.3% =

23 63 15, 51 95.8% =

24 62 60 72.2% =

25 25, 26, 33, 34, 35, 38, 39, 46 1, 2, 7, 37, 51 29.2% =

26 1, 2, 25, 26, 38, 39, 51, 53, 69 37 100% =

27 25, 39 1, 2, 26, 37, 38, 53, 72 66.7% =

28 68 66, 67 100% =

29 40–44, 67, 71 14 33.3% =

30 50 52 100% =

31 56 25, 26, 36, 38, 39, 54 66.7% =

32 45 1, 2, 25, 26, 38, 39, 46, 51, 53, 69–72 86.1% =

33 25 26 66.7% =

(7, 8) 1 5, 7, 25, 26, 38, 39 62.5% =

(2, 17) 25 26 100% =

(20, 21) 2 25, 26 100% =

(20–22) 2 25, 26 100% =

(24, 25) 39 25 62.5% =

(26, 27) 25, 26, 38, 39, 53 1, 2, 37, 51, 69, 72 66.7% =

(28, 29) 40–44, 66–68, 71 14, 50 33.3% =

(30, 31) 56 25, 26, 36, 38, 39, 50, 52, 54 66.7% =

Notes: See notes to Table A.3.

Table A.5: Clustering evaluation: supply (specifications IV and V)
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Shocks Cluster 1 Cluster 2 Match X̂c
r

1 20 18 100% =

2 25 26, 39 100% =

3 39 38 100% =

4 25, 39 26, 38 100% =

5 26 25, 39 100% =

6 6, 25, 26, 38, 39 1 97.9% =

7 1, 25, 39 26, 38 95.8% =

8 1, 2, 3, 5, 7, 8, 10, 25, 26, 38, 39 20, 31, 37, 45 91.7% =

9 8, 17 1, 25, 39 95.8% =

10 5 3 97.9% =

11 1 3, 10 100% =

12 4 25, 26, 39 100% =

13 12 9, 13, 14, 25, 26, 28, 39 100% =

14 31 18, 19, 55 100% =

15 22 16, 21, 24 100% =

16 25, 39 26 70.8% =

17 25 26 100% =

18 25, 26, 39 27, 30, 38 100% =

19 3 1, 6, 25, 26, 39 100% =

20 25 1, 2, 26, 31, 38, 39 100% =

21 2 25, 26 100% =

22 2, 25, 26, 39, 48, 49 38, 47 97.9% =

23 15, 51, 63 8, 11, 25, 26, 32, 38, 39, 65 93.8% =

24 25, 26, 38, 39, 57–62 1, 2 100% =

25 39 25, 26, 33, 34, 35, 38, 46 97.9% =

26 39 1, 2, 25, 26, 38, 51, 53, 69 100% =

27 25, 39 1, 2, 26, 37, 38, 53, 72 100% =

28 68 66, 67 100% =

29 25, 26, 38, 39, 41, 43, 44, 71 1, 2, 40, 42, 67 83.3% =

30 50 52 100% =

31 56 25, 26, 36, 38, 39, 54 100% =

32 45 1, 2, 25, 26, 38, 39, 46, 51, 53, 69–72 100% =

33 25 26, 39 100% =

(7, 8) 1, 25, 39 5, 7, 26, 38 97.9% =

(2, 17) 25 26 100% =

(20, 21) 2 25, 26 100% =

(20–22) 2 25, 26, 39 100% =

(24, 25) 39 25, 26, 33, 38, 46, 57, 59, 60, 62 95.8% =

(26, 27) 25, 39 1, 2, 26, 37, 38, 53 100% =

(28, 29) 25, 26, 38, 39, 41, 43, 44, 66–68, 71 1, 2, 40, 42 87.5% =

(30, 31) 56 25, 26, 36, 38, 39, 50, 52, 54 100% =

Notes: See notes to Table A.3.
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Table A.6: Clustering evaluation demand: Set 3

F̂pce
r F̂c

r

Shocks Cluster 1 Cluster 2 (or 3∗) Match Cluster 1

(1–3) 1 2, 3, 10 100% 2, 3
(4–7) 2 3, 4, 5 100% 6, 7
(8–12) 1 25∗, 26∗, 38∗, 39∗ 100% 9, 10, 11, 12
(13–17) 2 39∗ 100% 13, 14, 15, 16, 17
(18–20) 31 2, 18, 19, 20, 55 100% 19
(21–24) 2 16, 21, 22, 23, 24 100% 23
(25, 26) 25 26 100% 26
(27–32) 2 39∗ 100% 32
(33–39) 39 38 100% 33, 34, 35, 36, 37
(40–44) 40–44, 71 1∗, 2∗, 25∗, 26∗, 38∗, 39∗ 100% 40, 42
(45–49) Majority 38∗, 39∗ 97.9% 46, 47
(50–53) 50 52 100% 51, 53
(54–56) 56 36, 54 100% 54, 55
(57–62) 60, 62 57, 58, 59, 61 100% 58, 61
(63–72) 68 15, 45, 51, 53, 63, 66, 67, 70 100% 63, 64, 65, 69–72

Notes: The Shocks column indicates the composition of demand shocks. Bold numbers
indicate that the shock is feasible because its Match rate is larger than 70 percent. Red
indices to PCE categories in the cluster columns indicate problematic sectors that occur
in clusters 1 and 2 across several shocks. Note that I consider sector shock (40-44) as
infeasible as it includes 6 sectors in the first cluster. Too many categories in the first
cluster has implications on the number of factors used in the empirical model. PCE
categories marked with an asterisk indicate that instead of the second cluster the third
cluster is shown. Finally the last column indicates the first cluster for multiplier matrix
on sectoral consumption. For sectoral demand shocks I allow clusters to differ between
sectoral inflation rates and consumption growth.

72



G Model derivations

The empirical model is similar to De Graeve and Schneider (2023) (see their Appendix B), with
slight differences regarding data and observable factors. In De Graeve and Schneider (ibid.)
we only use quantity variables and one observable factor. Hence, in this paper I also allow for
multiple observed factors, as well as multiple types of sectoral variables, i.e. sectoral quantity
and price variables.
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H Additional tables

Table A.7: PCE sector indices and names

ID PCE Sector ID PCE Sector

1. New motor vehicles 37. Water supply and sanitation
2. Net purchases of used motor vehicles 38. Electricity
3. Motor vehicle parts and accessories 39. Natural gas
4. Furniture and furnishings 40. Physician services
5. Household appliances 41. Dental services
6. Glassware, tableware, and household utensils 42. Paramedical services
7. Tools and equipment for house and garden 43. Hospitals
8. Video, audio, photo., info. proc. equip. & media 44. Nursing homes
9. Sporting equipment, supplies, guns, and ammun. 45. Motor vehicle maintenance and repair
10. Sports and recreational vehicles 46. Other motor vehicle services
11. Recreational books 47. Ground transportation
12. Musical instruments 48. Air transportation
13. Jewelry and watches 49. Water transportation
14. Therapeutic appliances and equipment 50. Member. clubs, sports cent., parks, theat., mus.
15. Educational books 51. Audio-video, photo., info. proc. equip. services
16. Luggage and similar personal items 52. Gambling
17. Telephone and related communication equipment 53. Other recreational services
18. Food and nonalc. bever. purch. for off-prem. cons. 54. Purchased meals and beverages
19. Alcoholic beverages purchased for off-prem. cons. 55. Food furnished to employees
20. Food produced and consumed on farms 56. Accommodations
21. Women”s and girls” clothing 57. Financial services furnished without payment
22. Men”s and boys” clothing 58. Financial service charges, fees, and commissions
23. Children”s and infants” clothing 59. Life insurance
24. Other clothing materials and footwear 60. Net household insurance
25. Motor vehicle fuels, lubricants, and fluids 61. Net health insurance
26. Fuel oil and other fuels 62. Net motor vehicle and other transportation ins.
27. Pharmaceutical and other medical products 63. Telecommunication services
28. Recreational items 64. Postal and delivery services
29. Household supplies 65. Internet access
30. Personal care products 66. Higher education
31. Tobacco 67. Nursery, elementary, and secondary schools
32. Magazines, newspapers, and stationery 68. Commercial and vocational schools
33. Rental of tenant-occupied nonfarm housing 69. Professional and other services
34. Imputed rental of owner-occupied nonfarm housing 70. Personal care and clothing services
35. Rental value of farm dwellings 71. Social services and religious activities
36. Group housing 72. Household maintenance

Notes: This table serves as reference for indices to PCE categories used in the main text.

74



Table A.8: Variance decompositions for sectoral supply shocks

ct ppcet

Shocks V Dt=0 V Dt=inf V Dt=0 V Dt=inf

1 0.577 (0.00146,7.69) 1.28 (0.109,6.86) 2.15 (0.00578,14.6) 2.32 (0.133,12.4)
3 1.17 (0.00232,9.54) 1.75 (0.16,9.01) 1.28 (0.00456,12.5) 1.72 (0.136,10.8)
9 0.615 (0.00235,7.8) 1.18 (0.0988,8.04) 0.83 (0.00112,5.68) 4.17 (0.208,16.1)
10 1.67 (0.0258,6.33) 1.98 (0.585,6.38) 0.282 (0.00521,2.34) 1.31 (0.0608,5.35)
11 4.54 (0.245,26.6) 4.13 (0.843,23.3) 0.639 (0.00162,3.05) 2.44 (0.0838,7.52)
12 1.69 (0.0695,10.1) 1.81 (0.19,8.65) 1.22 (0.0107,6.47) 2.54 (0.118,12)
13 1.88 (0.00939,12.9) 2.24 (0.186,10.9) 0.781 (0.00429,13.3) 1.53 (0.0752,13.9)
14 0.458 (0.00424,4.06) 0.959 (0.116,3.82) 1.6 (0.00953,16.4) 1.99 (0.184,15.6)
15 0.484 (0.0353,14.2) 0.984 (0.433,11.7) 0.639 (0.00051,0.861) 0.874 (0.261,4.16)
19 1.8 (0.0165,9.79) 2.08 (0.237,9.37) 0.893 (0.00575,6.34) 1.97 (0.105,11.3)
21∗ na na na na
23 0.761 (0.000806,5.34) 1.26 (0.0626,4.93) 1.01 (0.000938,11.1) 1.65 (0.0956,12.3)
24 0.258 (0.000744,1.97) 0.739 (0.0893,2.47) 0.878 (0.000623,10.8) 1.52 (0.108,12.4)
28 0.399 (0.00322,2.13) 0.779 (0.0762,2.39) 1.64 (0.00527,10.8) 2.17 (0.116,13.1)
30 1.14 (0.00114,8.83) 1.33 (0.107,7.92) 1.19 (0.000404,11) 1.92 (0.12,12.9)
31 1.21 (0.005,7.73) 1.51 (0.106,7.27) 0.848 (0.00979,10.4) 1.6 (0.144,14.3)
32 0.301 (0.00193,3.06) 1.17 (0.157,3.87) 2.05 (0.00749,12.8) 2.41 (0.179,11.8)
(20, 21)∗ na na na na
(20–22) 0.383 (0.00141,7.05) 0.8 (0.0595,5.88) 2.69 (0.163,14) 1.84 (0.204,12.4)
(30, 31) 0.863 (0.000572,11) 1.27 (0.189,9.99) 1.16 (0.00224,10.3) 1.78 (0.102,10.5)

Sum 19.34 25.99 20.61 33.98

Notes: This table shows median variance decompositions of aggregate consumption and inflation caused by
sectoral supply shocks. In parentheses 95-percent confidence bounds are shown. The sum is for non-overlapping
median variance decompositions, i.e. it does not include the variance decomposition for joint (30,31) sector shocks.
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Table A.9: Variance decompositions for sectoral demand shocks

ct ppcet

Shocks V Dt=0 V Dt=inf V Dt=0 V Dt=inf

(1–3) 6.93 (0.896,21.8) 6.09 (1.29,19) 1.4 (0.00389,11.7) 1.89 (0.123,10.8)
(4–7) 2.65 (2.2,5.87) 3.27 (2.5,5.96) 4.27 (0.108,7.24) 4.46 (0.0658,5.05)
(8–12) 3.57 (0.0558,14.2) 3.88 (0.133,12.1) 1.79 (0.0917,20.4) 1.85 (0.16,20.1)
(13–17) 3.93 (0.195,16.1) 4.09 (0.471,13.9) 1.05 (0.00358,10.4) 1.56 (0.112,11.4)
(18–20) 2.56 (0.339,7.04) 3.98 (1.11,8.77) 1.75 (0.00674,13.2) 2.24 (0.172,13.1)
(21–24) 5.3 (0.572,18.1) 4.87 (0.709,15.7) 0.949 (0.004,9.61) 1.39 (0.0844,10.5)
(25, 26) 1.22 (0.00325,8.23) 1.54 (0.187,7.45) 1.1 (0.00359,10.2) 1.64 (0.116,11.8)
(27–32) 2.12 (0.0146,9.24) 3.58 (0.438,10.2) 0.902 (0.00182,11.2) 1.7 (0.108,12.8)
(33–39) na na na na
(50–53) na na na na
(54–56) na na na na
(57–62) na na na na
(63–72) na na na na

Sum 28.28 31.31 13.22 16.73

Notes: This table shows median variance decompositions of aggregate consumption and inflation caused
by sectoral demand shocks. In parentheses 95-percent confidence bounds are shown.
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I Additional figures

Figure A.1: Outlier adjustment for some PCE consumption growth series
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Notes: This figure contrasts outlier adjusted data with unadjusted data. Many of these PCE series
are affected by outliers. I therefore check for all individual PCE series whether observations exceed
the interquartile range by a factor 5. A value that exceeds this threshold is then adjusted to the
positive or negative value of that very threshold.
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Figure A.2: Outlier adjustment for some PCE inflation series
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Notes: See notes to Figure A.1.
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Figure A.3: PCE rankings for Electrical equipment, appliance, and components
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Notes: This figure summarizes the first six rankings for the sector-specific supply shock that
originates in the sector indicated in the title. The four models correspond, in this order, to
specification (I/II), (III), (IV), and (V) of the main text. For every specification I consider
24 calibrations based on input-output tables for the years 1997 to 2020. The bars summarize for the
respective specification how often the price of the intermediate-good sector appears at rank 1 to 6
across the 24 calibrations.
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Figure A.4: IM rankings for Educational services
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Notes: See notes to Figure A.3.
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Figure A.5: IM rankings for Management, administrative and waste services
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Notes: See notes to Figure A.3.
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Figure A.6: PCE inflation and its sectoral demand origins (y-o-y, demeaned)
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Notes: The figure shows median contributions of sectoral demand shocks to demeaned inflation.
Additionally, 95-percent and standard-deviation confidence bands are plotted.
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Figure A.7: Individual sector shocks and contributions to PCE inflation (1/5)
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Notes: This figure shows median contributions of individual sector shocks to demeaned and
annualized monthly PCE inflation (m-o-m).
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Figure A.8: Individual sector shocks and contributions to PCE inflation (2/5)
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Notes: See notes for Figure A.7.
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Figure A.9: Individual sector shocks and contributions to PCE inflation (3/5)
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Notes: See notes for Figure A.7.
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Figure A.10: Individual sector shocks and contributions to PCE inflation (4/5)
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Figure A.11: Individual sector shocks and contributions to PCE inflation (5/5)
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